Toggle light / dark theme

Inspired by origami, North Carolina State University researchers have found a way to remotely control the order in which a two-dimensional (2-D) sheet folds itself into a three-dimensional (3D) structure.

“A longstanding challenge in the field has been finding a way to control the sequence in which a 2-D sheet will fold itself into a 3D object,” says Michael Dickey, a professor of chemical and at NC State and co-corresponding author of a paper describing the work. “And as anyone who has done origami — or folded their laundry—can tell you, the order in which you make the folds can be extremely important.”

“The sequence of folding is important in life as well as in technology,” says co-corresponding author Jan Genzer, the S. Frank and Doris Culberson Distinguished Professor of Chemical and Biomolecular Engineering at NC State. “On small length scales, sequential folding via molecular machinery enables DNA to pack efficiently into chromosomes and assists proteins to adopt a functional conformation. On large length scales, sequential folding via motors helps solar panels in satellites and space shuttles unfold in space. The advance of the current work is to induce materials to fold sequentially using only .”

Read more

Lasers are everywhere nowadays: Doctors use them to correct eyesight, cashiers to scan your groceries, and quantum scientist to control qubits in the future quantum computer. For most applications, the current bulky, energy-inefficient lasers are fine, but quantum scientist work at extremely low temperatures and on very small scales. For over 40 years, they have been searching for efficient and precise microwave lasers that will not disturb the very cold environment in which quantum technology works.

A team of researchers led by Leo Kouwenhoven at TU Delft has demonstrated an on-chip laser based on a fundamental property of superconductivity, the ac Josephson effect. They embedded a small section of an interrupted superconductor, a Josephson junction, in a carefully engineered on-chip cavity. Such a device opens the door to many applications in which microwave radiation with minimal dissipation is key, for example in controlling qubits in a scalable computer.

The scientists have published their work in Science on the 3rd of March.

Read more

Frozen organs could be brought back to life safely one day with the aid of nanotechnology, a new study finds. The development could help make donated organs available for virtually everyone who needs them in the future, the researchers say.

The number of donated organs that could be transplanted into patients could increase greatly if there were a way to freeze and reheat organs without damaging the cells within them.

In the new work, scientists developed a way to safely thaw frozen tissues with the aid of nanoparticles — particles only nanometers or billionths of a meter wide. (In comparison, the average human hair is about 100,000 nanometers wide.)

Read more

The more crops we cultivate, the less chance our food supply wil get wiped out by a disease.


Out of the more than 300,000 plant species in existence, only three species—rice, wheat, and maize—account for most of the plant matter that humans consume, partly because in the history of agriculture, mutations arose that made these crops the easiest to harvest. But with CRISPR technology, we don’t have to wait for nature to help us domesticate plants, argue researchers at the University of Copenhagen. In a Review published March 2 in Trends in Plant Science, they describe how gene editing could make, for example, wild legumes, quinoa, or amaranth, which are already sustainable and nutritious, more farmable.

“In theory, you can now take those traits that have been selected for over thousands of years of crop domestication—such as reduced bitterness and those that facilitate easy harvest—and induce those mutations in plants that have never been cultivated,” says senior author Michael Palmgren, a botanist who heads an interdisciplinary think tank called “Plants for a Changing World” at the University of Copenhagen.

The approach has already been successful in accelerating domestication of undervalued crops using less precise methods. For example, researchers used chemical mutagenesis to induce in weeping rice grass, an Australian wild relative of domestic rice, to make it more likely to hold onto its seeds after ripening. And in wild field cress, a type of weedy grass, scientists silenced genes with RNA interference involved with , resulting in improved seed oil quality.

Read more

Humanoid robots may enhance growth of musculoskeletal tissue grafts for tissue transplant applications.

Over the past decade, exciting progress has been made in the development of humanoid robots. The significant potential future value of humanoids includes applications ranging from personal assistance to medicine and space exploration. In particular, musculoskeletal humanoids (such as Kenshiro and Eccerobot) were developed to interact with humans in a safer and more natural way (1, 2). They aim to closely replicate the detailed anatomy of the human musculoskeletal system including muscles, tendons, and bones.

With their structures activated by artificial muscles, musculoskeletal humanoids have the ability to mimic more accurately the multiple degrees of freedom and the normal range of forces observed in human joints. As a result, it is not surprising that they offer new opportunities in science and medicine. Here, we suggest that musculoskeletal robots may assist in the growth of musculoskeletal tissue grafts for tissue transplant applications.

Read more

The woolly mammoth has been extinct for more than 4000 years. Now scientists are talking about bringing it back with the help of a powerful gene-editing technique called CRISPR-Cas9.

But CRISPR’s promise extends far beyond the possibility to resurrect extinct animals. It may also have the potential to boost crop yields and create alternatives fuel sources, protect us from insect-borne scourges like malaria and Zika, and even cure cancer.

Read more

A core set of genes involved in the responses of honey bees to multiple diseases caused by viruses and parasites has been identified by an international team of researchers. The findings provide a better-defined starting point for future studies of honey-bee health, and may help scientists and beekeepers breed honey bees that are more resilient to stress.

“In the past decade, honey-bee populations have experienced severe and persistent losses across the Northern Hemisphere, mainly due to the effects of , such as fungi and viruses,” said Vincent Doublet, postdoctoral research fellow, University of Exeter. “The genes that we identified offer new possibilities for the generation of honey-bee stocks that are resistant to these pathogens.”

According to the researchers, recent advances in DNA sequencing have prompted numerous investigations of the genes involved in honey-bee responses to pathogens. Yet, until now, this vast quantity of data has been too cumbersome and idiosyncratic to reveal overarching patterns in honey-bee immunity.

Read more

Research from McMaster University has found that bacteria in the gut impacts both intestinal and behavioural symptoms in patients suffering from irritable bowel syndrome (IBS), a finding which could lead to new microbiota-directed treatments.

The new study, published today in Science Translational Medicine, was led by researchers from the Farncombe Family Digestive Health Research Institute at McMaster, Drs. Premysl Bercik and Stephen Collins, in collaboration with researchers from the University of Waterloo.

IBS is the most common gastrointestinal disorder in the world. It affects the large intestine and patients suffer from abdominal pain and altered bowel habits like diarrhea and constipation, which are often accompanied by chronic anxiety or depression. Current treatments aimed at improving symptoms have limited efficacy because the underlying causes are unknown.

Read more

Dangerous thought.


The scientific world was set ablaze of late as discussions ramped up about the resurrection of the wholly mammoth. I know what you’re thinking: Jurassic Park. Well, not quite — but maybe not that far off, either. Dr. Michio Kaku, professor of theoretical physics at the City College of New York, wonders: what if we could clone the Neanderthal, or a dinosaur, based solely off their genomes?

George Church, geneticist and director of Harvard University’s Church Labs, believes that we can clone a Neanderthal in our lifetime. So much so that he thinks all we need is “one extremely adventurous human female.” While he doesn’t advocate for the project to be attempted straight away, he does encourage discussion on the matter. Church believes that with current stem cell technology and our completed sequence of the Neanderthal genome, we are equipped with the potential to clone a Neanderthal.

The Neanderthals went extinct tens of thousands of years ago, so cloning one from recovered DNA would be impressive enough of a feat — but what about something from 65 million years ago? Dr. Kaku addresses this, admitting that cloning a dinosaur won’t be as easy as cloning a Neanderthal or a mammoth (which wouldn’t very “easy” to begin with) — but that doesn’t mean it’s impossible.

Read more

A 3D bioprinter able to create human skin is already being used to help burns patients and carry out skin testing, Alfredo Brisac, CEO of Spanish bioengineering company BioDan, told Radio Sputnik.

Last month, scientists at Universidad Carlos III de Madrid and the BioDan Group presented a prototype 3D bioprinter that can create human skin suitable for transplantation to patients or for use in cosmetic, chemical or pharmaceutical testing.

One of the first living human organs to be created using bioprinting, the 3D-printed skin is created using bio-inks with living cells that are deposited onto a structure that replicates nature. The bio-ink contains the key elements of keratinocytes, fibroblasts and fibrin, which can recreate the structure of the skin.

Read more