Toggle light / dark theme

Dr. Adam Freund PhD., Calico Life Sciences, Discussing Google Quest to Solve Aging.


Ira Pastor, ideaXme life sciences ambassador interviews Dr Adam Freund, PhD, Principal Investigator at Calico Life Sciences (Calico). https://www.calicolabs.com

Ira Pastor comments:

Calico is a research and development focused biotechnology company founded and backed by Google / Alphabet with the goal of combating aging and associated age-related diseases.

Calico has a billion dollar partnership with the bio-pharma giant AbbVie, focused on aging and age-related diseases, such as neuro-degeneration and cancer. Calico also has partnerships with the University of Texas Southwestern Medical Center and 2M Companies (regarding drug development for neurodegenerative disorders), the Broad Institute of MIT and Harvard (to advance research on age-related diseases and therapeutics), and a partnership with the Buck Institute for Research on Aging.

Calico has also announced a partnership with the California Institute for Quantitative Biosciences (QB3) based on researching the biology of aging and identifying potential therapeutics for age-related diseases, as well as and one with Ancestry-DNA based on conducting research into the genetics of human lifespan.

Dr. Adam Freund, Ph.D., is a Principal Investigator at Calico Life Sciences studying aging on the systems biology level.

With a Ph.D. in Molecular and Cell Biology, from the University of California at Berkeley, and a B.S. in Materials Science and Engineering from Stanford University, Dr. Freund’s lab works to identify and test post-developmental interventions that slow or reverse aspects of aging, as well as understand whether aging is regulated by similar mechanisms in diverse tissue compartments. To accomplish these goals, his lab develops automated, high content methods to quantify longitudinal decline and build tools to modulate targets with spatial and temporal precision in preclinical models, including gene delivery as well as small and large molecules. They use these tools to test hypotheses of aging in rapid, functionally relevant ways.

Just like humans, microbes have equipped themselves with tools to recognize and defend themselves against viral invaders. In a continual evolutionary battle between virus and host, CRISPR-Cas act as a major driving force of strain diversity in host-virus systems.

A new study led by Professor of Life Sciences Shai Pilosof (Ben-Gurion University of the Negev, Beer-Sheva, Israel), Professor of Microbiology Rachel Whitaker (University of Illinois Urbana-Champaign), and Professor of Ecology and Evolution Mercedes Pascual (University of Chicago) highlights the role of diversified immunity in mediating -pathogen interactions and its eco-evolutionary dynamics. The study also included Professor of Bioengineering and Bliss Faculty Scholar Sergei Maslov (University of Illinois Urbana-Champaign), Sergio A. Alcal´a-Corona (University of Chicago), and Ph.D. graduate students Ted Kim and Tong Wang (University of Illinois Urbana-Champaign).

Their findings were reported in the journal Nature Ecology & Evolution.

It looks like micro-plastics are now found inside human bodies.


Researchers found evidence of plastic contamination in tissue samples taken from the lungs, liver, spleen and kidneys of donated human cadavers.

“We have detected these chemicals of plastics in every single organ that we have investigated,” said senior researcher Rolf Halden, director of the Arizona State University (ASU) Biodesign Center for Environmental Health Engineering.

There’s long been concern that the chemicals in plastics could have a wide range of health effects ranging from diabetes and obesity to sexual dysfunction and infertility.

We ask students to login via google as we share a lot of our content over google drive. To access the same, a google account is a must.


The CRISPR-Cas9 system has revolutionized genetic manipulations and made gene editing simpler, faster and easily accessible to most laboratories.

To its recognition, this year, the French-American duo Emmanuelle Charpentier and Jennifer Doudna have been awarded the prestigious Nobel Prize for chemistry for CRISPR.

Experts say that COVID-19 almost certainly arose naturally, rather than being bioengineered.

But that doesn’t mean the next pandemic won’t involve a deadly virus designed by an adversary, as distinguished fellow at Harvard Law Vivek Wadhwa argues in a new essay for Foreign Policy.

“It is now too late to stop the global spread of these technologies — the genie is out of the bottle,” he wrote. “We must treat the coronavirus pandemic as a full dress rehearsal of what is to come — unfortunately, that includes not only viruses that erupt from nature, but also those that will be deliberately engineered by humans.”

One of the most remarkable recent advances in biomedical research has been the development of highly targeted gene-editing methods such as CRISPR that can add, remove, or change a gene within a cell with great precision. The method is already being tested or used for the treatment of patients with sickle cell anemia and cancers such as multiple myeloma and liposarcoma, and today, its creators Emmanuelle Charpentier and Jennifer Doudna received the Nobel Prize in chemistry.

While is remarkably precise in finding and altering genes, there is still no way to target treatment to specific locations in the body. The treatments tested so far involve removing or immune system T cells from the body to modify them, and then infusing them back into a patient to repopulate the bloodstream or reconstitute an immune response—an expensive and time-consuming process.

Building on the accomplishments of Charpentier and Doudna, Tufts researchers have for the first time devised a way to directly deliver gene-editing packages efficiently across the and into specific regions of the brain, into immune system cells, or to specific tissues and organs in mouse models. These applications could open up an entirely new line of strategy in the treatment of neurological conditions, as well as cancer, infectious disease, and autoimmune diseases.

Perhaps in the future, gene editing may allow retinal regeneration in humans to reverse age-related vision deterioration.


Damage to the retina is the leading cause of blindness in humans, affecting millions of people around the world. Unfortunately, the retina is one of the few tissues we humans can’t grow back.

Unlike us, other animals such as zebrafish are able to regenerate this tissue that’s so crucial to our power of sight. We share 70 percent of our genes with these tiny little zebrafish, and scientists have just discovered some of the shared genes include the ones that grant zebrafish the ability to grow back their retinas.

“Regeneration seems to be the default status, and the loss of that ability happened at multiple points on the evolutionary tree,” said Johns Hopkins University neuroscientist Seth Blackshaw.

Although it’s clearly NOT the approach taken for ultracold vitrification of patients undergoing life extension cryonization. (ULTRA🥶COLD being the exact opposite of ULTRA-BLOODY-H🥵T, obviously!)

Still, given the vast number of scientific and engineering discoveries and creations born on the backs of unexpected results, accidental discoveries, and outright screw up, it might have very useful data that has practical applications that would never otherwise have even been considered.


Italian scientists found intact brain cells in a man who was killed during the eruption of Mount Vesuvius in 79 AD.

Founder of MakeLoveNotPorn, and internationally famous advertising executive and public speaker, talks of Sex-Tech, a burgeoning trillion dollar industry, on the ideaXme show — #Ideaxme #MoveTheHumanStoryForward #CindyGallop #MakeLoveNotPorn #SexTech #Sexuality #SociallyAcceptableSex #Pornography #Porn #Orgasm #ErectileDysfunction #Biohacking #Viagra #Wellness #Health #Longevity #DisruptAging #Aarp #IfWeRanTheWorld #BartleBogleHegarty #Advertising #PublicRelations #TEDTalk #IraPastor #Bioquark #Regenerage AARP Disrupt Aging.