Toggle light / dark theme

Perhaps the most important lesson, which I have learned from Mises, was a lesson located outside economics itself. What Mises taught us in his writings, in his lectures, in his seminars, and in perhaps everything he said, was that economics—yes, and I mean sound economics, Austrian economics—is primordially, crucially important. Economics is not an intellectual game. Economics is deadly serious. The very future of mankind —of civilization—depends, in Mises’ view, upon widespread understanding of, and respect for, the principles of economics.

This is a lesson, which is located almost entirely outside economics proper. But all Mises’ work depended ultimately upon this tenet. Almost invariably, a scientist is motivated by values not strictly part of the science itself. The lust for fame, for material rewards—even the pure love of truth—these goals may possibly be fulfilled by scientific success, but are themselves not identified by science as worthwhile goals. What drove Mises, what accounted for his passionate dedication, his ability to calmly ignore the sneers of, and the isolation imposed by academic contemporaries, was his conviction that the survival of mankind depends on the development and dissemination of Austrian economics…

Austrian economics is not simply a matter of intellectual problem solving, like a challenging crossword puzzle, but literally a matter of the life or death of the human race.

–Israel M. Kirzner, Society for the Development of Austrian Economics Lifetime Achievement Award Acceptance Speech, 2006

Dear Lifeboat Foundation family & friends,

This 243-page thesis and this 16-page executive summary deliver a tenable, game-theoretical solution to this complex global dilemma:

Our narrative tables evolutionarily stable strategy for the problem of sustainable economic development on earth and other earth-like planets. In order to accomplish the task at hand with so few words, we hit the ground running with an exploration of Bertrand Russell’s conjecture that economic power is a derivative function of military power. Next we contextualize the formidable obstacle presented of teleological thinking. Third, we introduce Truly Non-cooperative Games – axioms and complimentary negotiation models developed to analyze a myriad of politico-economic problems, including the problem of sustainable economic development. Here we present The Principle of Relative Insularity, a unified theory of value which unites economics, astrophysics, and biology. Finally, we offer a synthetic narrative in which we explore several crucial logical implications that follow from our findings.

Those interested in background details and/or a deeper exploration of the logical implications that follow from this theoretical development may wish to pursue a few pages of an comprehensive, creative, and thoroughly exhaustive letter of introduction to this abridged synthesis: The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth.

Those interested in considering how this game-theoretical solution informs “evolutionarily stable” investment strategy may also wish to take in a brief overview of my PhD research: On the Problem of Modern Portfolio Theory: In Search of a Timeless & Universal Investment Perspective.

Please feel free to post all thoughts, comments, criticisms, and suggestions.

Thanks for reading!

Sincerely,

Matt Funk, FLS, BSc, MA, MFA, PhD Candidate, University of Malta, Department of Banking & Finance

PS: The author would like to thank the Lifeboat Foundation, Linnean Society of London, Property and Environment Research Center, Society for Range Management, Professors Kurial, Nagarajan, Baldacchino, Fielding, Falzon (University of Malta), Lockwood (University of Wyoming), MacKinnon (Memorial University), Sloan (Lancaster University), McKenna (Notre Dame), Schlicht (Ludwig-Maximilians- Universität München) and his dedicated team at MPRA, author & astronomer Jeff Kanipe, Dr Willard S. Boyle, Dr John Harris, fellow students, family, and friends for their priceless guidance, support, and encouragement. He also sends out a very special thanks to Professors Frey (Universität Zürich), Selten (Universität Bonn), and Nash (Princeton University) for their originality, independence, and inspiration.

A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

Posted in asteroid/comet impacts, biological, complex systems, cosmology, defense, economics, existential risks, geopolitics, habitats, human trajectories, lifeboat, military, philosophy, sustainabilityTagged , , , , , , , , , , , | 2 Comments on A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

(NOTE: Selecting the “Switch to White” button on the upper right-hand corner of the screen may ease reading this text).

“Who are you?” A simple question sometimes requires a complex answer. When a Homeric hero is asked who he is.., his answer consists of more than just his name; he provides a list of his ancestors. The history of his family is an essential constituent of his identity. When the city of Aphrodisias… decided to honor a prominent citizen with a public funeral…, the decree in his honor identified him in the following manner:

Hermogenes, son of Hephaistion, the so-called Theodotos, one of the first and most illustrious citizens, a man who has as his ancestors men among the greatest and among those who built together the community and have lived in virtue, love of glory, many promises of benefactions, and the most beautiful deeds for the fatherland; a man who has been himself good and virtuous, a lover of the fatherland, a constructor, a benefactor of the polis, and a savior.
– Angelos Chaniotis, In Search of an Identity: European Discourses and Ancient Paradigms, 2010

I realize many may not have the time to read all of this post — let alone the treatise it introduces — so for those with just a few minutes to spare, consider abandoning the remainder of this introduction and spending a few moments with a brief narrative which distills the very essence of the problem at hand: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

But for those with the time and inclinations for long and windy paths through the woods, please allow me to introduce myself: I was born and raised in Kentland, Indiana, a few blocks from the train station where my great-great grandfather, Barney Funk, arrived from Germany, on Christmas day of 1859. I completed a BSc in Entrepreneurship and an MFA in film at USC, and an MA in Island Studies at UPEI. I am a naturalist, Fellow of The Linnean Society of London, PhD candidate in economics at the University of Malta, hunter & fisherman, NRA member, protective father, and devoted husband with a long, long line of illustrious ancestors, a loving mother & father, extraordinary brothers & sister, wonderful wife, beautiful son & daughter, courageous cousins, and fantastic aunts, uncles, in-laws, colleagues, and fabulous friends!

Thus my answer to the simple question, “Who are you?” requires a somewhat complex answer as well.

But time is short and I am well-positioned to simplify because all of the hats I wear fall under a single umbrella: I am a friend of the Lifeboat Foundation (where I am honoured to serve on the Human Trajectories, Economics, Finance, and Diplomacy Advisory Boards), a foundation “dedicated to encouraging scientific advancements while helping humanity survive existential risks.”

Almost everything I do – including the roles, associations, and relationships noted above, supports this mission.

It’s been nearly a year since Eric generously publish Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth, and since that time I have been fortunate to receive many interesting and insightful emails packed full of comments and questions; thus I would like to take this opportunity to introduce this work – which represents three years of research.

Those interested in taking the plunge and downloading the file above may note that this discourse

tables an evolutionarily stable strategy for the problem of sustainable economic development – on islands and island-like planets (such as Earth), alike, and thus this treatise yields, in essence, a long-term survival guide for the inhabitants of Earth.

Thus you may expect a rather long, complex discourse.

This is indeed what you may find – a 121 page synthesis, including this 1,233 page Digital Supplement.

As Nassim Nicholas Taleb remarked in Fooled by Randomness:

I do not dispute that arguments should be simplified to their maximum potential; but people often confuse complex ideas that cannot be simplified into a media-friendly statement as symptomatic of a confused mind. MBAs learn the concept of clarity and simplicity—the five-minute manager take on things. The concept may apply to the business plan for a fertilizer plant, but not to highly probabilistic arguments—which is the reason I have anecdotal evidence in my business that MBAs tend to blow up in financial markets, as they are trained to simplify matters a couple of steps beyond their requirement.

But there is indeed a short-cut — in fact, there are at least two short-cuts.

First, perhaps the most direct pleasant approach to the summit is a condensed, 237 page thesis: On the Problem of Sustainable Economic Development: A Game-Theoretical Solution.

But for those pressed for time and/or those merely interested in sampling a few short, foundational works (perhaps to see if you’re interested in following me down the rabbit hole), the entire theoretical content of this 1,354-page report (report + digital supplement) may be gleamed from 5 of the 23 works included within the digital supplement. These working papers and publications are also freely available from the links below – I’ll briefly relate how these key puzzle pieces fit together:

The first publication offers a 13-page over-view of our “problem situation”: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

Second is a 21-page game-theoretical development which frames the problem of sustainable economic development in the light of evolution – perhaps 70% of our theoretical content lies here: On the Truly Noncooperative Game of Life on Earth: In Search of the Unity of Nature & Evolutionary Stable Strategy.

Next comes a 113-page gem which attempts to capture the spirit and essence of comparative island studies, a course charted by Alexander von Humboldt and followed by every great naturalist since (of which, more to follow). This is an open letter to the Fellows of the Linnean Society of London, a comparative study of two, diametrically opposed economic development plans, both put into action in that fateful year of 1968 — one on Prince Edward Island, the other on Mustique. This exhaustive work also holds the remainder of the foundation for our complete solution to this global dilemma – and best of all, those fairly well-versed in game theory need not read it all, the core solution may be quickly digested on pages 25–51:
On the Truly Noncooperative Game of Island Life: Introducing a Unified Theory of Value & Evolutionary Stable ‘Island’ Economic Development Strategy.

Fourth comes an optional, 19-page exploration that presents a theoretical development also derived and illuminated through comparative island study (including a mini-discourse on methods). UPEI Island Studies Programme readers with the time and inclination for only one relatively short piece, this may be the one to explore. And, despite the fact that this work supports the theoretical content linked above, it’s optional because there’s nothing new here – in fact, these truths have been well known and meticulously documented for over 1,000 years – but it may prove to be a worthwhile, engaging, and interesting read nonetheless, because these truths have become so unfashionable that they’ve slipped back into relative obscurity: On the Problem of Economic Power: Lessons from the Natural History of the Hawaiian Archipelago.

And finally I’ll highlight another optional, brief communique – although this argument may be hopelessly compressed, here, in 3 pages, is my entire solution:
Truly Non-Cooperative Games: A Unified Theory.

Yes, Lifeboat Foundation family and friends, you may wish to pause to review the abstracts to these core, foundational works, or you may even wish to review them completely and put the puzzle pieces together yourself (the pages linked above total 169 – or a mere 82 pages if you stick to the core excerpt highlighted in my Linnean Letter), but, as the great American novelist Henry Miller remarked:

In this age, which believes that there is a short cut to everything, the greatest lesson to be learned is that the most difficult way is, in the long run, the easiest.

Why?

That’s yet another great, simple question that may require several complex answers, but I’ll give you three:

#1). First and foremost, because explaining is a difficult art.

As Richard Dawkins duly noted:

Explaining is a difficult art. You can explain something so that your reader understands the words; and you can explain something so that the reader feels it in the marrow of his bones. To do the latter, it sometimes isn’t enough to lay the evidence before the reader in a dispassionate way. You have to become an advocate and use the tricks of the advocate’s trade.

Of course much of this depends upon the reader – naturally some readers may find that less (explanation) is more. Others, however, may find benefit from reading even more (more, that is, than my report and the digital supplement). You may find suggested preliminary and complimentary texts in the SELECTED BIBLIOGRAPHY (below). The report itself includes these and many more. In short, the more familiar readers may be with some or all of these works, the less explaining they may require.

#2). No matter how much explaining you do, it’s actually never enough, and, as Abraham Lincoln wisely noted at Gettysburg, the work is never done. For more one this important point, let’s consider the words of Karl Popper:

When we propose a theory, or try to understand a theory, we also propose, or try to understand, its logical implications; that is, all those statements which follow from it. But this… is a hopeless task: there is an infinity of unforeseeable nontrivial statements belonging to the informative content of any theory, and an exactly corresponding infinity of statements belonging to its logical content. We can therefore never know or understand all the implications of any theory, or its full significance.
This, I think, is a surprising result as far as it concerns logical content; though for informative content it turns out to be rather natural…. It shows, among other things, that understanding a theory is always an infinite task, and that theories can in principle be understood better and better. It also shows that, if we wish to understand a theory better, what we have to do first is to discover its logical relation to those existing problems and existing theories which constitute what we may call the ‘problem situation’.
Admittedly, we also try to look ahead: we try to discover new problems raised by our theory. But the task is infinite, and can never be completed.

In fact, when it comes right down to it, my treatise – in fact, my entire body of research, is, in reality, merely an exploration of the “infinity of unforeseeable nontrivial statements belonging to the informative content” of the theory for which Sir Karl Popper is famous: his solution to David Hume’s problem of induction (of which you’ll hear a great deal if you brave the perilous seas of thought in the works introduced and linked herewith).

#3). Okay, this is a tricky one, but here it goes: Fine, a reasonable skeptic may counter, I get it, it’s hard to explain and there’s a lot of explaining to do – but if 100% of the theoretical content may be extracted from less than 200 pages, then doesn’t that mean you could cut about 1,000 pages?

My answer?

Maybe.

But then again, maybe not.

The reality of the situation is this: neither I nor anyone else can say for sure – this is known as the mind-body problem. In essence, given the mind-body problem, not only am I unable to know exactly how to explain something I know, moreover, I’m not even able to know how it is that I know what I know. I’m merely able to guess. Although this brief introduction is not the proper time nor place to explore the contents of this iteration of Pandora’s Box, those interested in a thorough exploration of this particular problem situation would be well-served with F.A. von Hayek’s The Sensory Order: An Inquiry into the Foundations of Theoretical Psychology (1952). But, in short, the bulk of the Digital Supplement and much of the report itself is merely an attempt to combat the mind-body problem – an attempt to put down as much of the history (and methodology) of this theoretical development as possible. As Descartes remarked at the outset of a treatise on scientific method:

This Tract is put forth merely as a history, or, if you will, as a tale, in which, amid some examples worthy of imitation, there will be found, perhaps, as many more which it were advisable not to follow, I hope it will prove useful to some without being hurtful to any, and that my openness will find some favor with all.

Perhaps you may grasp my theoretical development – but perhaps you may grasp it in a matter by which I did not intend for you to grasp it – perhaps I had stumbled upon a truth in another work within my digital supplement that may make it all clear. Or, perhaps I’ve got it all wrong, and perhaps you – by following in my footsteps through the historical course of this theoretical development (faithfully chronicled in the digital supplement) – may be able to help show me my error (and then, of course we may both rejoice); Malthus felt likewise:

If [the author] should succeed in drawing the attention of more able men to what he conceives to be the principal difficulty in… society and should, in consequence, see this difficulty removed, even in theory, he will gladly retract his present opinions and rejoice in a conviction of his error.

Anticipating another point regarding style: This report is very, very unusual insofar as style is concerned. It’s personal, highly opinionated, and indulges artistic license at almost every turn in the road. In fact, you may also find this narrative a touch artistic – yet it’s all true. As Norman Maclean remarked in A River Runs Trough It, “You like to tell true stories, don’t you?’ he asked, and I answered, ‘Yes, I like to tell stories that are true.’”

I like to tell stories that are true, too, and if you like to read them, then this epic journey of discovery may be for you. I speak to this point at length, but, in short, I submit that there is a method to the madness (in fact, the entire report may also be regarded as an unusual discourse on method).

Why have I synthesized this important theoretical development in an artistic narrative? In part, because Bruno Frey (2002) clearly stated why that’s the way it should be.

But I also did so in hopes that it may help readers grasp what it’s really all about; as the great Russian-American novelist Ayn Rand detailed:

Man’s profound need of art lies in the fact that his cognitive faculty is conceptual, i.e., that he acquires knowledge by means of abstractions, and needs the power to bring his widest metaphysical abstractions into his immediate, perceptual awareness. Art fulfills this need: by means of a selective re-creation, it concretizes man’s fundamental view of himself and of existence. It tells man, in effect, which aspects of his experience are to be regarded as essential, significant, important. In this sense, art teaches man how to use his consciousness.

Speaking of scientific method: I have suggested that my curiously creative narrative may offer some insight into the non-existent subject of scientific method — so please download for much more along these lines — but I want to offer an important note, especially for colleagues, friends, students, and faculty at UPEI: I sat in on a lecture last winter where I was surprised to learn that “island studies” had been recently invented by Canada research chair – thus I thought perhaps I should offer a correction and suggest where island studies really began:

Although it is somewhat well known that Darwin and Wallace pieced the theory of evolution together independently, yet at roughly the same time – Wallace, during his travels through the Malay archipelago, and Darwin, during his grand circumnavigation of the island of Earth onboard the Beagle (yes, the Galapagos archipelago played a key role, but perhaps not as important as has been suggested in the past). But what is not as commonly know is that both Darwin and Wallace had the same instructor in the art of comparative island studies. Indeed, Darwin and Wallace both traveled with identical copies of the same, treasured book: Alexander von Humboldt’s Personal Narrative of Travels to the Equinoctial Regions of the New Continent. Both also testified to the fundamental role von Humboldt played by inspiring their travels and, moreover, developing of their theories.

Thus, I submit that island studies may have been born with the publication of this monumental work in 1814; or perhaps, as Berry (2009) chronicled in Hooker and Islands (see SELECTED BIBLIOGRAPHY, below), it may have been Thomas Pennant or Georg Forster:

George Low of Orkney provided, together with Gilbert White, a significant part of the biological information used by pioneering travel writer Thomas Pennant, who was a correspondent of both Joseph Banks and Linnaeus [Pennant dedicated his Tour in Scotland and Voyage to the Hebrides (1774–76) to Banks and published Banks’s description of Staffa, which excited much interest in islands; Banks had travelled with James Cook and visited many islands; Georg Forster, who followed Banks as naturalist on Cook’s second voyage inspired Alexander Humboldt, who in turn Darwin treated as a model.

But whomever it may have been — or whomever you may ultimately choose to follow — Humboldt certainly towers over the pages of natural history, and Gerard Helferich’s Humboldt’s Cosmo’s: Alexander von Humboldt and the Latin American Journey that Changed the WayWe See the World (2004) tells Humboldt’s story incredibly well. This treasure also happens to capture the essence of Humboldt’s method, Darwin’s method, Wallace’s method, Mayr’s method, Gould’s method, and it most certainly lays out the map I have attempted to follow:

Instead of trying to pigeonhole the natural world into prescribed classification, Kant had argued, scientists should work to discover the underlying scientific principles at work, since only those general tenets could fully explain the myriad natural phenomena. Thus Kant had extended the unifying tradition of Thales, Newton, Descartes, et al.… Humboldt agreed with Kant that a different approach to science was needed, one that could account for the harmony of nature… The scientific community, despite prodigious discoveries, seemed to have forgotten the Greek vision of nature as an integrated whole.… ‘Rather than discover new, isolated facts I preferred linking already known ones together,’ Humboldt later wrote. Science could only advance ‘by bringing together all the phenomena and creations which the earth has to offer. In this great sequence of cause and effect, nothing can be considered in isolation.’ It is in this underlying connectedness that the genuine mysteries of nature would be found. This was the deeper truth that Humboldt planned to lay bare – a new paradigm from a New World. For only through travel, despite its accompanying risks, could a naturalist make the diverse observations necessary to advance science beyond dogma and conjecture. Although nature operated as a cohesive system, the world was also organized into distinct regions whose unique character was the result of all the interlocking forces at work in that particular place. To uncover the unity of nature, one must study the various regions of the world, comparing and contrasting the natural processes at work in each. The scientist, in other words, must become an explorer.

With these beautiful words in mind and the spirit of adventure in the heart, I thank you for listening to this long story about an even longer story, please allow me to be your guide through an epic adventure.

But for now, in closing, I’d like to briefly return to the topic at hand: human survival on Earth.

A few days ago, Frenchman Alain Robert climbed the world’s tallest building – Burj Khalifa – in Dubai.

After the six hour climb, Robert told Gulf News, “My biggest fear is to waste my time on earth.”

I certainly share Robert’s fear – Alexander von Humboldt, Darwin, and Wallace did, too, by the way.

But then Robert added, “To live, we don’t need much, just a roof over our heads some food and drink and that’s it … everything else is superficial.”

I’m afraid that’s where Robert and I part ways – and if you would kindly join me on a journey through The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth – I would love to explain why Robert’s assertion is simply not true.

Please feel free to post comments or contact me with any thoughts, comments, questions, or suggestions.

MWF
Charlottetown, Prince Edward Island

PS: My report suggests many preliminary and complimentary readings – but I’ve revisited this topic with the aim of producing a selected bibliography of the most condensed and readily accessible (i.e, freely available online) works which may help prepare the reader for my report and the foundational theoretical discourses noted and linked above. Most are short papers, but a few great books and dandy dissertations may be necessary as well!

SELECTED BIBLIOGRAPHY

BERRY, R. (2009). Hooker and islands. Bio Journal Linn Soc 96:462–481.

DARWIN, C., WALLACE, A. (1858). On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Proc Linn Soc 3:45–62.

DARWIN, C., et. al. (1849). A Manual of Scientific Enquiry; Prepared for the use of Her Majesty’s Navy : and Adapted for Travellers in General (Murray, London).

DOBZHANSK Y, T. (1973). Nothing in biology makes sense except in light of evolution. Amer Biol Teacher 35:125- 129.

EINSTEIN, A. (1920). Relativity: The Special and General Theory (Methuen & Co., London).

FIELDING, R. (2010). Artisanal Whaling in the Atlantic: A Comparative Study of Culture, Conflict, and Conservation in St. Vincent and the Faroe Islands. A PhD dissertation (Louisiana State University, Baton Rouge).

FREY, B. (2002). Publishing as Prostitution? Choosing Between One‘s Own Ideas and Academic Failure. Pub Choice 116:205–223.

FUNK, M. (2010a). Truly Non-Cooperative Games: A Unified Theory. MPRA 22775:1–3.

FUNK, M. (2008). On the Truly Noncooperative Game of Life on Earth: In Search of the Unity of Nature & Evolutionary Stable Strategy. MPRA 17280:1–21.

FUNK, M. (2009a). On the Origin of Mass Extinctions: Darwin’s Nontrivial Error. MPRA 20193:1–13.

FUNK, M. (2009b). On the Truly Noncooperative Game of Island Life: Introducing a Unified Theory of Value & Evolutionary Stable ‘Island’ Economic Development Strategy. MPRA 19049:1–113.

FUNK, M. (2009c). On the Problem of Economic Power: Lessons from the Natural History of the Hawaiian Archipelago. MPRA 19371:1–19.

HELFERICH, G. (2004). Humboldt’s Cosmo’s: Alexander von Humboldt and the Latin American Journey that Changed the Way We See the World (Gotham Books, New York).

HOLT, C., ROTH, A. (2004). The Nash equilibrium: A perspective. Proc Natl Acad Sci USA 101:3999–4000.

HAYEK, F. (1974). The Pretense of Knowledge. Nobel Memorial Lecture, 11 December 1974. 1989 reprint. Amer Econ Rev 79:3–7.

HUMBOLDT, A., BONPLAND, A. (1814). Personal Narrative of Travels to the Equinoctial Regions of the New Continent (Longman, London).

KANIPE, J. (2009). The Cosmic Connection: How Astronomical Events Impact Life on Earth (Prometheus, Amherst).

MAYNARD SMITH, J. (1982). Evolution and the Theory of Games (Cambridge Univ, New York).

MAYR, E. (2001). What Evolution Is (Basic Books, New York).

NASH, J., et., al. (1994). The Work of John Nash in Game Theory. Prize Seminar, December 8, 1994 (Sveriges Riksbank, Stockholm).

NASH, J. (1951). Non-Cooperative Games. Ann Math 54:286–295.

NASH, J. (1950). Two-Person Cooperative Games. RAND P-172 (RAND, Santa Monica).

POPPER, K. (1999). All life is Problem Solving (Routledge, London).

POPPER, K. (1992). In Search of a Better World (Routledge, London).

ROGERS, D., EHRLICH, P. (2008). Natural selection and cultural rates of change. Proc Natl Acad Sci USA 105:3416 −3420.

SCHWEICKART, R., et. al. (2006). Threat Mitigation: The Gravity Tractor. NASA NEO Workshop, Vail, Colorado.

SCHWEICKART, R., et. al. (2006). Threat Mitigation: The Asteroid Tugboat. NASA NEO Workshop, Vail, Colorado.

STIGLER, G. (1982). Process and Progress of Economics. J of Pol Econ 91:529–545.

TALEB, N. (2001). Fooled by Randomness (Texere, New York).

WEIBULL, J. (1998). WHAT HAVE WE LEARNED FROM EVOLUTIONARY GAME THEORY SO FAR? (Stockholm School of Economics, Stockholm).

WALLACE, A. (1855). On the Law Which has Regulated the Introduction of New Species. Ann of Nat History 16:184–195.

An obvious next step in the effort to dramatically lower the cost of access to low Earth orbit is to explore non-rocket options. A wide variety of ideas have been proposed, but it’s difficult to meaningfully compare them and to get a sense of what’s actually on the technology horizon. The best way to quantitatively assess these technologies is by using Technology Readiness Levels (TRLs). TRLs are used by NASA, the United States military, and many other agencies and companies worldwide. Typically there are nine levels, ranging from speculations on basic principles to full flight-tested status.

The system NASA uses can be summed up as follows:

TRL 1 Basic principles observed and reported
TRL 2 Technology concept and/or application formulated
TRL 3 Analytical and experimental critical function and/or characteristic proof-of concept
TRL 4 Component and/or breadboard validation in laboratory environment
TRL 5 Component and/or breadboard validation in relevant environment
TRL 6 System/subsystem model or prototype demonstration in a relevant environment (ground or space)
TRL 7 System prototype demonstration in a space environment
TRL 8 Actual system completed and “flight qualified” through test and demonstration (ground or space)
TRL 9 Actual system “flight proven” through successful mission operations.

Progress towards achieving a non-rocket space launch will be facilitated by popular understanding of each of these proposed technologies and their readiness level. This can serve to coordinate more work into those methods that are the most promising. I think it is important to distinguish between options with acceleration levels within the range human safety and those that would be useful only for cargo. Below I have listed some non-rocket space launch methods and my assessment of their technology readiness levels.

Spacegun: 6. The US Navy’s HARP Project launched a projectile to 180 km. With some level of rocket-powered assistance in reaching stable orbit, this method may be feasible for shipments of certain forms of freight.

Spaceplane: 6. Though a spaceplane prototype has been flown, this is not equivalent to an orbital flight. A spaceplane will need significantly more delta-v to reach orbit than a suborbital trajectory requires.

Orbital airship: 2. Though many subsystems have been flown, the problem of atmospheric drag on a full scale orbital airship appears to prevent this kind of architecture from reaching space.

Space Elevator: 3. The concept may be possible, albeit with major technological hurdles at the present time. A counterweight, such as an asteroid, needs to be positioned above geostationary orbit. The material of the elevator cable needs to have a very high tensile strength/mass ratio; no satisfactory material currently exists for this application. The problem of orbital collisions with the elevator has also not been resolved.

Electromagnetic catapult: 4. This structure could be built up the slope of a tall mountain to avoid much of the Earth’s atmosphere. Assuming a small amount of rocket power would be used after a vehicle exits the catapult, no insurmountable technological obstacles stand in the way of this method. The sheer scale of the project makes it difficult to develop the technology past level 4.

Are there any ideas we’re missing here?

Peter Garretson from the Lifeboat Advisory Board appears in the latest edition of New Scientist:

“IT LOOKS inconsequential enough, the faint little spot moving leisurely across the sky. The mountain-top telescope that just detected it is taking it very seriously, though. It is an asteroid, one never seen before. Rapid-survey telescopes discover thousands of asteroids every year, but there’s something very particular about this one. The telescope’s software decides to wake several human astronomers with a text message they hoped they would never receive. The asteroid is on a collision course with Earth. It is the size of a skyscraper and it’s big enough to raze a city to the ground. Oh, and it will be here in three days.

Far-fetched it might seem, but this scenario is all too plausible. Certainly it is realistic enough that the US air force recently brought together scientists, military officers and emergency-response officials for the first time to assess the nation’s ability to cope, should it come to pass.

They were asked to imagine how their respective organisations would respond to a mythical asteroid called Innoculatus striking the Earth after just three days’ warning. The asteroid consisted of two parts: a pile of rubble 270 metres across which was destined to splash down in the Atlantic Ocean off the west coast of Africa, and a 50-metre-wide rock heading, in true Hollywood style, directly for Washington DC.

The exercise, which took place in December 2008, exposed the chilling dangers asteroids pose. Not only is there no plan for what to do when an asteroid hits, but our early-warning systems — which could make the difference between life and death — are woefully inadequate. The meeting provided just the wake-up call organiser Peter Garreston had hoped to create. He has long been concerned about the threat of an impact. “As a taxpayer, I would appreciate my air force taking a look at something that would be certainly as bad as nuclear terrorism in a city, and potentially a civilisation-ending event,” he says.”

Read the entire article at New Scientist. Read the NASA NEO report “Natural Impact Hazard Interagancy Deliberate Planning Exercise After Action Report”.

Asteroid hazard in the context of technological development

It is easy to notice that the direct risks of collisions with asteroids decreases with technological development. First, they (or, exactly, our estimation of risks) decrease due to more accurate measurement of them — that is, at the expense of more accurate detection of dangerous asteroids and measurements of their orbits we could finally find that the real chance of impact is 0 in the next 100 year. (If, however, will be confirmed the assumption that we live during the episode of comet bombardment, the assessment of risk would increase 100 times to the background.) Second, it decreases due to an increase in our ability to reject asteroids.
On the other hand, the impact of falling asteroids become larger with time — not only because the population density increases, but also because the growing connectedness of the world system, resulting in that damage in one place can spread across the globe. In other words, although the probability of collisions is reducing, the indirect risks associated with the asteroid danger is increasing.
The main indirect risks are:
A) The destruction of hazardous industries in the place of the fall — for example, nuclear power plant. The entire mass of the station in such a case would evaporated and the release of radiation would be higher than in Chernobyl. In addition, there may be additional nuclear reactions because of sudden compression of the station when it is struck by asteroid. Yet the chances of a direct hit of an asteroid in the nuclear plants are small, but they grow with the growing number of stations.
B) There is a risk that even a small group of meteors, moving a specific angle in a certain place in the earth’s surface could lead to lunch of the system for the Prevention of rocket attacks and lead to an accidental nuclear war. Similar consequences could have a small air explosion of an asteroid (a few meters in size). The first option is more likely for developed superpowers system of warning (but which has flaws or unsecured areas in their ABM system, as in the Russian Federation), while the second — for the regional nuclear powers (like India and Pakistan, North Korea, etc.) which are not able to track missiles by radars, but could react to a single explosion.
C) The technology to drive asteroids in the future will create a hypothetical possibility to direct asteroids not only from Earth, but also on it. And even if there will be accidental impact of the asteroid, there will be talks about that it was sent on purpose. Yet hardly anyone will be sent to Earth asteroids, because such action can easily be detected, the accuracy is low and it need to be prepared for decades before event.
D) Deviations of hazardous asteroids will require the creation of space weapons, which could be nuclear, laser or kinetic. Such weapons could be used against the Earth or the spacecrafts of an opponent. Although the risk of applying it against the ground is small, it still creates more potential damage than the falling asteroids.
E) The destruction of the asteroid with nuclear explosion would lead to an increase in its affecting power at the expense of its fragments – to the greater number of blasts over a larger area, as well as the radioactive contamination of debris.
Modern technological means give possibility to move only relatively small asteroids, which are not global threat. The real danger is black comets in size of several kilometers which are moving on elongated elliptical orbits at high speeds. However, in the future, space can be quickly and cheaply explored through self-replicating robots based on nanoteh. This will help to create huge radio telescopes in space to detect dangerous bodies in the solar system. In addition, it is enough to plant one self-replicating microrobot on the asteroid, to multiply it and then it could break the asteroid on parts or build engines that will change its orbit. Nanotehnology will help us to create self-sustaining human settlements on the Moon and other celestial bodies. This suggests that the problem of asteroid hazard will in a few decades be outdated.
Thus, the problem of preventing collisions of the Earth with asteroids in the coming decades can only be a diversion of resources from the global risks:
First, because we are still not able to change orbits of those objects which actually can lead to the complete extinction of humanity.
Secondly, by the time (or shortly thereafter), when the nuclear missile system for destruction of asteroids will be created, it will be obsolete, because nanotech can quickly and cheaply harness the solar system by the middle of 21 century, and may, before .
And third, because such system at time when Earth is divided into warring states will be weapon in the event of war.
And fourthly, because the probability of extinction of humanity as a result of the fall of an asteroid in a narrow period of time when the system of deviation of the asteroids will be deployed, but powerful, nanotechnology is not yet established, is very small. This time period may be equal to 20 years, say from 2030 — until 2050, and the chances of falling bodies of 10 km size during this time, even if we assume that we live in a period comet bombardment, when the intensity is 100 times higher — is at 1 to 15 000 (based on an average frequency of the fall of bodies every 30 million years). Moreover, given the dynamics, we can reject the indeed dangerous objects only at the end of this period, and perhaps even later, as larger the asteroid, the more extensive and long-term project for its deviation is required. Although 1 to 15 000 is still unacceptable high risk, it is commensurate with the risk of the use of space weapons against the Earth.
In the fifth, anti-asteroid protection diverts attention from other global issues, the limited human attention and financial resources. This is due to the fact that the asteroid danger is very easy for understanding — it is easy to imagine, it is easy to calculate the probabilities and it is clear to the public. And there is no doubt of its reality, and there are clear ways for protection. (e.g. the probability of volcanic disaster comparable to the asteroid impact by various estimates, is from 5 to 20 times higher at the same level of energy – but we have no idea how it can be prevented.) So it differs from other risks that are difficult to imagine, that are impossible quantify, but which may mean the probability of complete extinction of tens of percent. These are the risks of AI, biotech, nanotech and nuclear weapons.
In the sixth, when talking about relatively small bodies like Apophis, it may be cheaper to evacuate the area of the fall than to deviate the asteroid. A likely the area of the impact will be ocean.
But I did not call to abandon antiasterod protection, because we first need to find out whether we live in the comet bombardment period. In this case, the probability of falling 1 km body in the next 100 years is equal to 6 %. (Based on data on the hypothetical fall in the last 10 000 years, like a comet Klovis http://en.wikipedia.org/wiki/Younger_Dryas_impact_event , traces of which can be 500 000 in the craters of similar entities called Carolina Bays http://en.wikipedia.org/wiki/Carolina_bays crater, and around New Zealand in 1443 http://en.wikipedia.org/wiki/Mahuika_crater and others 2 impacts in last 5 000 years , see works of http://en.wikipedia.org/wiki/Holocene_Impact_Working_Group ). We must first give power to the monitoring of dark comets and analysis of fresh craters.

Image from The Road film, based on Cormac McCarthy's book

How About You?
I’ve just finished reading Cormac McCarthy’s The Road at the recommendation of my cousin Marie-Eve. The setting is a post-apocalyptic world and the main protagonists — a father and son — basically spend all their time looking for food and shelter, and try to avoid being robbed or killed by other starving survivors.

It very much makes me not want to live in such a world. Everybody would probably agree. Yet few people actually do much to reduce the chances of of such a scenario happening. In fact, it’s worse than that; few people even seriously entertain the possibility that such a scenario could happen.

People don’t think about such things because they are unpleasant and they don’t feel they can do anything about them, but if more people actually did think about them, we could do something. We might never be completely safe, but we could significantly improve our odds over the status quo.

Danger From Two Directions: Ourselves and Nature.

Human technology is becoming more powerful all the time. We already face grave danger from nuclear weapons, and soon molecular manufacturing technologies and artificial general intelligence could pose new existential threats. We are also faced with slower, but serious, threats on the environmental side: Global warming, ocean acidification, deforestation/desertification, ecosystem collapse, etc.

Continue reading “I Don’t Want To Live in a Post-Apocalyptic World” | >

Here I would like to suggest readers a quotation from my book “Structure of the global catastrophe” (http://www.scribd.com/doc/7529531/-) there I discuss problems of preventing catastrophes.

Refuges and bunkers

Different sort of a refuge and bunkers can increase chances of survival of the mankind in case of global catastrophe, however the situation with them is not simple. Separate independent refuges can exist for decades, but the more they are independent and long-time, the more efforts are necessary for their preparation in advance. Refuges should provide ability for the mankind to the further self-reproduction. Hence, they should contain not only enough of capable to reproduction people, but also a stock of technologies which will allow to survive and breed in territory which is planned to render habitable after an exit from the refuge. The more this territory will be polluted, the higher level of technologies is required for a reliable survival.
Very big bunker will appear capable to continue in itself development of technologies and after catastrophe. However in this case it will be vulnerable to the same risks, as all terrestrial civilisation — there can be internal terrorists, AI, nanorobots, leaks etc. If the bunker is not capable to continue itself development of technologies it, more likely, is doomed to degradation.
Further, the bunker can be or «civilizational», that is keep the majority of cultural and technological achievements of the civilisation, or “specific”, that is keep only human life. For “long” bunkers (which are prepared for long-term stay) the problem of formation and education of children and risks of degradation will rise. The bunker can or live for the account of the resources which have been saved up before catastrophe, or be engaged in own manufacture. In last case it will be simply underground civilisation on the infected planet.
The more a bunker is constructed on modern technologies and independent cultural and technically, the higher ammount of people should live there (but in the future it will be not so: the bunker on the basis of advanced nanotechnology can be even at all deserted, — only with the frozen human embryos). To provide simple reproduction by means of training to the basic human trades, thousand people are required. These people should be selected and be in the bunker before final catastrophe, and, it is desirable, on a constant basis. However it is improbable, that thousand intellectually and physically excellent people would want to sit in the bunker “just in case”. In this case they can be in the bunker in two or three changes and receive for it a salary. (Now in Russia begins experiment «Mars 500» in which 6 humans will be in completely independent — on water, to meal, air — for 500 days. Possibly, it is the best result which we now have. In the early nineties in the USA there was also a project «Biosphera-2» in which people should live two years on full self-maintenance under a dome in desert. The project has ended with partial failure as oxygen level in system began to fall because of unforeseen reproduction of microorganisms and insects.) As additional risk for bunkers it is necessary to note fact of psychology of the small groups closed in one premise widely known on the Antarctic expeditions — namely, the increase of animosities fraught with destructive actions, reducing survival rate.
The bunker can be either unique, or one of many. In the first case it is vulnerable to different catastrophes, and in the second is possible struggle between different bunkers for the resources which have remained outside. Or is possible war continuation if catastrophe has resulted from war.
The bunker, most likely, will be either underground, or in the sea, or in space. But the space bunker too can be underground of asteroids or the Moon. For the space bunker it will be more difficult to use the rests of resources on the Earth. The bunker can be completely isolated, or to allow “excursion” in the external hostile environment.
As model of the sea bunker can serve the nuclear submarine possessing high reserve, autonomy, manoeuvrability and stability to negative influences. Besides, it can easily be cooled at ocean (the problem of cooling of the underground closed bunkers is not simple), to extract from it water, oxygen and even food. Besides, already there are ready boats and technical decisions. The boat is capable to sustain shock and radiating influence. However the resource of independent swimming of modern submarines makes at the best 1 year, and in them there is no place for storage of stocks.
Modern space station ISS could support independently life of several humans within approximately year though there are problems of independent landing and adaptation. Not clearly, whether the certain dangerous agent, capable to get into all cracks on the Earth could dissipate for so short term.
There is a difference between gaso — and bio — refuges which can be on a surface, but are divided into many sections for maintenance of a mode of quarantine, and refuges which are intended as a shelter from in the slightest degree intelligent opponent (including other people who did not manage to get a place in a refuge). In case of biodanger island with rigid quarantine can be a refuge if illness is not transferred by air.
A bunker can possess different vulnerabilities. For example, in case of biological threat, is enough insignificant penetration to destroy it. Only hi-tech bunker can be the completely independent. Energy and oxygen are necessary to the bunker. The system on a nuclear reactor can give energy, but modern machines hardly can possess durability more than 30–50 years. The bunker cannot be universal — it should assume protection against the certain kinds of threats known in advance — radiating, biological etc.
The more reinforced is a bunker, the smaller number of bunkers can prepare mankind in advance, and it will be more difficult to hide such bunker. If after a certain catastrophe there was a limited number of the bunkers which site is known, the secondary nuclear war can terminate mankind through countable number of strikes in known places.
The larger is the bunker, the less amount of such bunkers is possible to construct. However any bunker is vulnerable to accidental destruction or contamination. Therefore the limited number of bunkers with certain probability of contamination unequivocally defines the maximum survival time of mankind. If bunkers are connected among themselves by trade and other material distribution, contamination between them is more probable. If bunkers are not connected, they will degrade faster. The more powerfully and more expensively is the bunker, the more difficult is to create it imperceptibly for the probable opponent and so it easeir becomes the goal for an attack. The more cheaply the bunker, the less it is durable.
Casual shelters — the people who have escaped in the underground, mines, submarines — are possible. They will suffer from absence of the central power and struggle for resources. The people, in case of exhaustion of resources in one bunker, can undertake the armed attempts to break in other next bunker. Also the people who have escaped casually (or under the threat of the comong catastrophe), can attack those who was locked in the bunker.
Bunkers will suffer from necessity of an exchange of heat, energy, water and air with an external world. The more independent is the bunker, the less time it can exist in full isolation. Bunkers being in the Earth will deeply suffer from an overheating. Any nuclear reactors and other complex machines will demand external cooling. Cooling by external water will unmask them, and it is impossible to have energy sources lost-free in the form of heat, while on depth of earth there are always high temperatures. Temperature growth, in process of deepening in the Earth, limits depth of possible bunkers. (The geothermal gradient on the average makes 30 degrees C/kilometers. It means, that bunkers on depth more than 1 kilometre are impossible — or demand huge cooling installations on a surface, as gold mines in the republic of South Africa. There can be deeper bunkers in ices of Antarctica.)
The more durable, more universal and more effective, should be a bunker, the earlier it is necessary to start to build it. But in this case it is difficult to foresee the future risks. For example, in 1930th years in Russia was constructed many anti-gase bombproof shelters which have appeared useless and vulnerable to bombardments by heavy demolition bombs.
Efficiency of the bunker which can create the civilisation, corresponds to a technological level of development of this civilisation. But it means that it possesses and corresponding means of destruction. So, especially powerful bunker is necessary. The more independently and more absolutely is the bunker (for example, equipped with AI, nanorobots and biotechnologies), the easier it can do without, eventually, people, having given rise to purely computer civilisation.
People from different bunkers will compete for that who first leaves on a surface and who, accordingly, will own it — therefore will develop the temptation for them to go out to still infected sites of the Earth.
There are possible automatic robotic bunkers: in them the frozen human embryos are stored in a certain artificial uterus and through hundreds or thousand years start to be grown up. (Technology of cryonics of embryos already exists, and works on an artificial uterus are forbidden for bioethics reasons, but basically such device is possible.) With embryos it is possible to send such installations in travel to other planets. However, if such bunkers are possible, the Earth hardly remains empty — most likely it will be populated with robots. Besides, if the human cub who has been brought up by wolves, considers itself as a wolf as whom human who has been brought up by robots will consider itself?
So, the idea about a survival in bunkers contains many reefs which reduce its utility and probability of success. It is necessary to build long-term bunkers for many years, but they can become outdated for this time as the situation will change and it is not known to what to prepare. Probably, that there is a number of powerful bunkers which have been constructed in days of cold war. A limit of modern technical possibilities the bunker of an order of a 30-year-old autonomy, however it would take long time for building — decade, and it will demand billions dollars of investments.
Independently there are information bunkers, which are intended to inform to the possible escaped descendants about our knowledge, technologies and achievements. For example, in Norway, on Spitsbergen have been created a stock of samples of seeds and grain with these purposes (Doomsday Vault). Variants with preservation of a genetic variety of people by means of the frozen sperm are possible. Digital carriers steady against long storage, for example, compact discs on which the text which can be read through a magnifier is etched are discussed and implemented by Long Now Foundation. This knowledge can be crucial for not repeating our errors.

On April 16, 2008, NASA News Release 08–103 reaffirmed that its estimation of a 1 in 45,000 chance of impact in 2036 remains valid.

The B612 Foundation is working towardcs the goal of of significantly altering the orbit of an asteroid in a controlled manner by 2015.

the B612 Foundation made estimates of Apophis path if a 2036 Earth impact were to occur.

The impact result is a narrow corridor called the ‘risk corrider’ which would be a few miles wide. Countries estimated to be in the direct path:

- southern Russia,
- across the north Pacific Ocean (relatively close to the coastlines of the California and Mexico), then
- right between Nicaragua and Costa Rica,
- crossing northern Colombia and
- Venezuela and over the Caribbean islands of Trinidad and Tobago,
- over the Atlantic Ocean to the west coast of Africa.


Earth’s Path of Risk for the 99942 Apophis Asteroid that is suspected to be on track for a collision course with earth in the year 2036. This image is self-made from data estimated by the B612 Foundation, this is why it is just an approximation. Credit: Mario Roberto Duran Ortiz Mariordo and the re-use of this image is based on ‘Fair use’ of public domain info by the B612 Foundation work on Apophis.

The hypothetical impact of Apophis along the path of risk could have more than 10 million casualties, however the threatened zones would be evacuated [as per B612 foundation comment. The threat of casualties would be for a similar sized object, if it was not detected.].

Spaceworks Engineering had an award winning plan to send a spacecraft to shadow the Apophis asteroid

A video Foresight: A Radio Beacon Mission to Asteroid Apophis is on Youtube.

The Foresight final report is here

As of October 19, 2006 [and also April 16, 2008′, the impact probability for April 13, 2036, was calculated as 1 in 45,000. An additional impact date in 2037 was also identified; the impact probability for that encounter was calculated as 1 in 12.3 million.

On January 29th, 2008 Near Earth Object 2007 TU24 will intersect Earth’s orbit at the startlingly close proximity of only 0.0038AU — or 1.4 lunar distances from our own planet. According to the resources I reviewed this NEO represents the closest known approach to earth until 2027 — that is of course assuming no more surprises like 2007 TU24 which itself wasn’t discovered until October 11th of 2007.

It seems to me that this is an assumption we can’t afford to make. It appears that 2007 TU24 is not going to strike the planet however it is possible that it will pass through a portion of earth’s magnetosphere. The repercussions of this transit can’t at this time be predicted with any certainty though they apparently range from no effect whatsoever to potentially catastrophic changes to weather, tectonic plate movement, the oceans and more.

Some might say that we’ve no need to be concerned — that this kind of near miss (and lets be frank here — in the vastness of even our solar system 1.4 lunar distances from earth is a near miss) is a freak occurrence. Don’t be so sure. Just one day later — that’s right, on January 30th it was thought possible — one might even say reasonably likely — that another asteroid will strike our second nearest celestial neighbor, Mars.

Recent updates based upon more detailed information about the path of asteroid 2007 WD5 have concluded that the odds of an impact occurring have now dropped to one in ten thousand making an impact exceptionally unlikely. However, it should be evident that our ability to identify objects less than 100 meters across is insufficient to provide us with enough time to do anything aside from evacuating the regions likely to be impacted by a collision with an incoming NEO.

More than one expert has come out and stated that NEO’s represent one of the most pressing potential mega-disasters threatening human — or even all — life on earth, yet this is a problem that could be solved within the capabilities of our technology. Between better early detection and development of a meaningful defensive strategy it is possible to protect humanity from this threat. All we need is the funding and the mandate from the people that would secure the resources required.

New Scientist reports on a new study by researchers led by Massimiliano Vasile of the University of Glasgow in Scotland have compared nine of the many methods proposed to ward off such objects, including blasting them with nuclear explosions.

The team assessed the methods according to three performance criteria: the amount of change each method would make to the asteroid’s orbit, the amount of warning time needed and the mass of the spacecraft needed for the mission.

The method that came out on top was a swarm of mirror-carrying spacecraft. The spacecraft would be launched from Earth to hover near the asteroid and concentrate sunlight onto a point on the asteroid’s surface.

In this way, they would heat the asteroid’s surface to more than 2100° C, enough to start vaporising it. As the gases spewed from the asteroid, they would create a small thrust in the opposite direction, altering the asteroid’s orbit.

The scientists found that 10 of these spacecraft, each bearing a 20-metre-wide inflatable mirror, could deflect a 150-metre asteroid in about six months. With 100 spacecraft, it would take just a few days, once the spacecraft are in position.

To deflect a 20-kilometre asteroid, about the size of the one that wiped out the dinosaurs, it would take the combined work of 5000 mirror spacecraft focusing sunlight on the asteroid for three or more years.

But Clark Chapman of the Southwest Research Institute in Boulder, Colorado, US, says ranking the options based on what gives the largest nudge and takes the least time is wrongheaded.

The proper way to go about ranking this “is to give weight to adequate means to divert an NEO of the most likely sizes we expect to encounter, and to do so in a controllable and safe manner”, Chapman told New Scientist.

The best approach may be to ram the asteroid with a spacecraft to provide most of the change needed, then follow up with a gravity tractor to make any small adjustments needed, he says.

It is good to have several options for deflection and a survey to detect the specific risks of near earth objects.