Toggle light / dark theme

The 21-digit solution to the decades-old problem suggests many more solutions exist.

What do you do after solving the answer to life, the universe, and everything? If you’re mathematicians Drew Sutherland and Andy Booker, you go for the harder problem.

In 2019, Booker, at the University of Bristol, and Sutherland, principal research scientist at MIT, were the first to find the answer to 42. The number has pop culture significance as the fictional answer to “the ultimate question of life, the universe, and everything,” as Douglas Adams famously penned in his novel “The Hitchhiker’s Guide to the Galaxy.” The question that begets 42, at least in the novel, is frustratingly, hilariously unknown.

Layers of ice and rock obviate the need for “habitable zone” and shield life against threats.

SwRI researcher theorizes worlds with underground oceans may be more conducive to life than worlds with surface oceans like Earth.

One of the most profound discoveries in planetary science over the past 25 years is that worlds with oceans beneath layers of rock and ice are common in our solar system. Such worlds include the icy satellites of the giant planets, like Europa, Titan, and Enceladus, and distant planets like Pluto.

The case (or not) for life in the clouds of Venus, re-evaluated 7 months after the initial claimed detection of phosphine in its atmosphere.


The possible detection of the biomarker of phosphine as reported by Greaves et al. in the Venusian atmosphere stirred much excitement in the astrobiology community. While many in the community are adamant that the environmental conditions in the Venusian atmosphere are too extreme for life to exist, others point to the claimed detection of a convincing biomarker, the conjecture that early Venus was doubtlessly habitable, and any Venusian life might have adapted by natural selection to the harsh conditions in the Venusian clouds after the surface became uninhabitable. Here, I first briefly characterize the environmental conditions in the lower Venusian atmosphere and outline what challenges a biosphere would face to thrive there, and how some of these obstacles for life could possibly have been overcome.

Master communicator Neil DeGrasse Tyson is at his inimitable self in this new episode. We discuss everything from why space aliens might have a whole other set of senses than we humans and why moving to Mars might never work. Please have a listen.


Astrophysicist Neil DeGrasse Tyson, director of the Hayden Planetarium at the American Museum of Natural History (AMNH) in New York City, discusses everything from pond scum to space aliens in this off-the-wall and very engaging episode. It’s vintage Tyson. We also touch on his latest book written with George Mason University physicist James Trefil — “Cosmic Queries: StarTalk’s Guide To Who We Are, How We Got Here, And Where We’re Going.”

Space roboticist Vandi Verma, who operates the Perseverance—the most advanced astrobiology lab ever sent to another world—as it roams Mars looking for signs of ancient microbial life, said unconscious bias was also a factor in shaping aspirations. “Don’t make assumptions about what a child may be interested in because of their gender or race,” she said. “Don’t buy the Lego just for the boy.”

What do you do after solving the answer to life, the universe, and everything? If you’re mathematicians Drew Sutherland and Andy Booker, you go for the harder problem.

In 2019, Booker, at the University of Bristol, and Sutherland, principal research scientist at MIT, were the first to find the answer to 42. The number has pop culture significance as the fictional answer to “the ultimate question of life, the universe, and everything,” as Douglas Adams famously penned in his novel “The Hitchhiker’s Guide to the Galaxy.” The question that begets 42, at least in the novel, is frustratingly, hilariously unknown.

In mathematics, entirely by coincidence, there exists a polynomial equation for which the answer, 42, had similarly eluded mathematicians for decades. The equation x3+y3+z3=k is known as the sum of cubes problem. While seemingly straightforward, the equation becomes exponentially difficult to solve when framed as a “Diophantine equation”—a problem that stipulates that, for any value of k, the values for x, y, and z must each be .

We could generate oxygen with machines and geoengineer the entire planets input and output.


A new study supported by NASA’s exoplanet habitability research lays out how the Sun will eventually bake the planet, turning Earth from a lush, oxygen-rich world to a dried-up husk with no complex life.

Neil degrasse tyson, science, neil tyson, neil degrasse tyson (organization leader), tyson, neil, astrophysics, degrasse, cosmos, space, universe, earth, startalk, ndt, aliens, mars, comedian, atheist, chuck nice, hayden planetarium, god, physics, astrophysicist, asteroid, comedy, atheism, interview, star talk, mkbhd, stars, time.