Toggle light / dark theme

Don’t panic, but mysterious sources have been sending radio signals to Earth for years. Now, scientists have tracked down some of their origins — and they were surprised by what they found.

And no, it’s still not aliens.

Using NASA’s Hubble Space Telescope, astronomers have traced the locations of five deep space signals known as fast radio bursts (FRBs). In a thousandth of a second, these powerful blasts generate as much energy as the sun does in an entire year.

Origin of Information —“Something Very Old, Very Powerful and Very Special has Been Unleashed on Earth” | The Daily Galaxy.


“Humans are strange…We are the aliens,” observes Columbia University astrophysicist, Caleb Scharf, noting that humans are a striking anomaly in the natural world. “We also have a truly outsize impact on the planetary environment without much in the way of natural attrition to trim our influence (at least not yet).

Like a Sudden Invasion by Extraterrestrials

But the strangest thing of all, notes Scharf for Scientific American, is how we generate, exploit, and propagate information that is not encoded in our heritable genetic material, yet travels with us through time and space. Not only is much of that information represented in purely symbolic forms—alphabets, languages, binary codes—it is also represented in each brick, alloy, machine, and structure we build from the materials around us. Even the symbolic stuff is housed in some material form or the other, whether as ink on pages or electrical charges in nanoscale pieces of silicon.

From a purely scientific frame of reference, many quantum phenomena like non-local correlations between distant entities and wave-particle duality, the wave function collapse and consistent histories, quantum entanglement and teleportation, the uncertainty principle and overall observer-dependence of reality pin down our conscious mind being intrinsic to reality. And this is the one thing the current physicalist paradigm fails to account for. Critical-mass anomalies will ultimately lead to the full paradigm shift in physics. It’s just a matter of time.

With consciousness as primary, everything remains the same and everything changes. Mathematics, physics, chemistry, biology are unchanged. What changes is our interpretation as to what they are describing. They are not describing the unfolding of an objective physical world, but transdimensional evolution of one’s conscious mind. There’s nothing “physical” about our physical reality except that we perceive it that way. By playing the “Game of Life” we evolved to survive not to see quantum mechanical reality. At our classical level of experiential reality we perceive ourselves as physical, at the quantum level we are a probabilistic wave function, which is pure information.

No matter how you slice it, reality is contextual, the notion that immediately dismisses ‘observer-independent’ interpretations of quantum mechanics and endorses the Mental Universe hypothesis. But we have to be careful here not to throw the baby out with the bathwater, so to speak. I’d like to make a very important point at this juncture of our discussion: Mental and physical are two sides of the same coin made of information. Both should be viewed as the same substance.

Researchers from University of Copenhagen have investigated what happened to a specific kind of plasma—the first matter ever to be present—during the first microsecond of Big Bang. Their findings provide a piece of the puzzle to the evolution of the universe, as we know it today.

About 14 billion years ago, our changed from being a lot hotter and denser to expanding radically—a process that scientists have named the Big Bang.

And even though we know that this fast expansion created particles, atoms, stars, galaxies and life as we know it today, the details of how it all happened are still unknown.

www.iBiology.org.

Dr. Kate Adamala describes what synthetic cells are and how they can teach us the fundamental principles of life.

Life on Earth evolved once — this means that all biological systems on our planet are rooted in the same fundamental framework. This framework is extremely complex and we have yet to fully understand the processes inside each living cell. One way of understanding complex systems is to break them down into simpler parts. This is the principle of engineering the synthetic cell: to use our current knowledge of biology for building a living cell with the least amount of parts and complexity. Synthetic cells can be used to teach us about the basic principles of life and evolution, and they hold promise for a range of applications including biomaterials and drug development. Dr. Kate Adamala narrates an introduction to this exciting field.

0:00 Introduction.
2:22 How do we build a synthetic cell?
7:12 How can we use synthetic cells?

Speaker Biography:
Dr. Kate Adamala is a synthetic biologist and a McKnight Land-Grant Assistant Professor in the Department of Genetics, Cell Biology and Development at the University of Minnesota. Her research interests include astrobiology, synthetic cell engineering and biocomputing. Adamala is a co-founder and steering group member of the international Build-a-Cell Initiative, which seeks to broaden the impact of synthetic cell engineering. Find more information on Adamala’s lab at:
http://www.protobiology.org.

Credits:
Brittany Anderton (iBiology): Producer.
Eric Kornblum (iBiology): Videographer and Editor.
Kate Adamala (UMN): Graphics and Narration.