Toggle light / dark theme

In Korea, scientists are turning to better ways for improving our screen time, and this means 3D printing something most of us know little about: quantum dots. Focusing on refining the wonders of virtual reality and other electronic displays even further, researchers from the Nano Hybrid Technology Research Center of Korea Electrotechnology Research Institute (KERI), a government-funded research institute under National Research Council of Science & Technology (NST) of the Ministry of Science and ICT (MSIT), have created nanophotonic 3D printing technology for screens. Meant to be used with virtual reality, as well as TVs, smartphones, and wearables, high resolution is achieved due to a 3D layout expanding the density and quality of the pixels.

Led by Dr. Jaeyeon Pyo and Dr. Seung Kwon Seol, the team has published the results of their research and development in “3D-Printed Quantum Dot Nanopixels.” While pixels are produced to represent data in many electronics, conventionally they are created with 2D patterning. To overcome limitations in brightness and resolution, the scientists elevated this previously strained technology to the next level with 3D printed quantum dots to be contained within polymer nanowires.

A start-up based in Berkeley, California, polySpectra, is attempting to make better materials for 3D printing. Their inaugural material, COR Alpha, promises to be a stronger and more durable material for digital light processing (DLP) printing. If it’s a compelling fit for your project, you could win $25,000 worth of 3D printing services from polySpectra.

In an attempt to spur the development of 3D printed projects with COR Alpha, polySpectra is holding the Make It Real 3D Printing Challenge. The challenge calls for submissions of designs that could benefit from the new material. The winner will receive $25,000 worth of polySpectra’s 3D printing services in the form of mentoring, design consultation, functional prototyping, qualification, testing and fabrication. Applications are due September 28.

Oak Ridge National Laboratory researchers have developed artificial intelligence software for powder bed 3D printers that assesses the quality of parts in real time, without the need for expensive characterization equipment.

The software, named Peregrine, supports the “digital thread” being developed at ORNL that collects and analyzes data through every step of the manufacturing process, from design to feedstock selection to the print build to .

“Capturing that information creates a digital ‘clone’ for each part, providing a trove of data from the raw material to the operational component,” said Vincent Paquit, who leads advanced manufacturing data analytics research as part of ORNL’s Imaging, Signals and Machine Learning group. “We then use that data to qualify the part and to inform future builds across multiple part geometries and with multiple materials, achieving new levels of automation and manufacturing quality assurance.”

The company claims that it is set to disrupt the food supply chain with an automated robotic that can print a plant based burger and cook it up for you to your unique requirements within just six minutes.


This food robot could 3D print a patty and grill it to your specifications inside of six minutes. Welcome to the future of food preparation.

Dutch designers Eric Klarenbeek and Maartje Dros have developed a bioplastic made from algae, which they believe could completely replace synthetic plastics over time.

Klarenbeek and Dros cultivate algae – aquatic plants – which they then dry and process into a material that can be used to 3D print objects.

The designers believe that the algae polymer could be used to make everything from shampoo bottles to tableware or rubbish bins, eventually entirely replacing plastics made from fossil fuels like oil.

More durable prosthetics and medical devices for patients and stronger parts for airplanes and automobiles are just some of the products that could be created through a new 3D printing technology invented by a UMass Lowell researcher.

Substances such as plastics, metals and wax are used in 3D printers to make products and parts for larger items, as the practice has disrupted the prototyping and manufacturing fields. Products created through the 3D printing of plastics include everything from toys to drones. While the for 3D plastics printers is estimated at $4 billion and growing, challenges remain in ensuring the printers create objects that are produced quickly, retain their strength and accurately reflect the shape desired, according to UMass Lowell’s David Kazmer, a plastics engineering professor who led the research project.

Called injection printing, the technology Kazmer pioneered is featured in the Additive Manufacturing posted online last week.

Robot that 3D prints and cooks plant-based meat alternatives for foodservice — can replace manufacturing practices.


Israeli start-up SavorEat has developed an automated, closed system that 3D prints and cooks plant-based meat alternatives for foodservice. “This robot can replace manufacturing practices,” CEO Racheli Vizman tells FoodNavigator.