Toggle light / dark theme

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

In this set of posts I discuss three concepts. If implemented these concepts have the potential to bring about major changes in our understanding of the physical Universe. But first a detour.

In my earlier post I had suggested that both John Archibald Wheeler and Richard Feynman, giants of the physics community, could have asked different questions (what could we do differently?) regarding certain solutions to Maxwell’s equations, instead of asking if retrocausality could be a solution.

I worked 10 years for Texas Instruments in the 1980s & 1990s. Corporate in Dallas, had given us the daunting task of raising our Assembly/Test yields from 83% to 95%, within 3 years, across 6,000 SKUs (products), with only about 20+ (maybe less) engineers, and no assistance from Dallas. Assembly/Test skills had moved offshore, therefore, Dallas was not in a position to provide advice. I look back now and wonder how Dallas came up with the 95% number.

Impossibly daunting because many of our product yields were in the 70+%. We had good engineers and managers. The question therefore was how do you do something seemingly impossible, without changing your mix of people, equipment and technical skills sets?

Let me tell you the end first. We achieved 99% to 100% Assembly/Test yields across the board for 6,000 SKUs within 3 years. And this, in a third world nation not known for any remarkable scientific or engineering talent! I don’t have to tell you what other lessons we learned from this as it should be obvious. So me telling Dr. David Neyland, of DARPA’s TTOI’ll drop a zero” at the first 100YSS conference in 2011, still holds.

How did we do it? For my part I was responsible for Engineering Yield (IT) Systems, test operation cost modeling for Overhead Transfer Pricing, and tester capacity models to figure out how to increase test capacity. But the part that is relevant to this discussion was team work. We organized the company into teams, brought in consultants to teach what team work was and how to arrive at and execute operational and business decisions as teams.

And one of the keys to team work was to allow anyone and everyone to speak up. To voice their opinions. To ask questions, no matter how strange or silly those questions appeared to be. To never put down another person because he/she had different views.

Everyone from the managing director of the company down to the production operators were organized into teams. Every team had to meet once a week. To ask those questions. To seek those answers. That was some experience, working with and in those teams. We found things we did not know or understand about our process. That in turn set off new & old teams to go figure! We understood the value of a matrix type organization.

As a people not known for any remarkable scientific and engineering talent, we did it! Did the impossible. I learned many invaluable lessons from my decade at Texas Instruments that I’ll never forget and will always be grateful for.

My Thanksgiving this year is that I am thankful I had the opportunity to work for Texas Instruments when I did.

So I ask, in the spirit of the Kline Directive, can we as a community of physicists and engineers come together, to explore what others have not, to seek what others will not, to change what others dare not, to make interstellar travel a reality within our lifetimes?

Previous post in the Kline Directive series.

Next post in the Kline Directive series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

In this post I will explore Technological Feasibility. At the end of the day that is the only thing that matters. If a hypothesis is not able to vindicate itself with empirical evidence it will not become technologically feasible. If it is not technologically feasible then it stands no chance of becoming commercially viable.

If we examine historical land, air and space speed records, we can construct and estimate of velocities that future technologies can achieve, aka technology forecasting. See table below for some of the speed records.

Year Fastest Velocity Craft Velocity (km/h) Velocity (m/s)
2006 Escape Earth New Horizons 57,600 16,000
1976 Capt. Eldon W. Joersz and Maj. George T. Morgan Lockheed SR-71 Blackbird 3,530 980
1927 Car land speed record (not jet engine) Mystry 328 91
1920 Joseph Sadi-Lecointe Nieuport-Delage NiD 29 275 76
1913 Maurice Prévost Deperdussin Monocoque 180 50
1903 Wilbur Wright at Kitty Hawk Wright Aircraft 11 3

A quick and dirty model derived from the data shows that we could achieve velocity of light c by 2151 or the late 2150s. See table below.

Year Velocity (m/s) % of c
2200 8,419,759,324 2808.5%
2152 314,296,410 104.8%
2150 274,057,112 91.4%
2125 49,443,793 16.5%
2118 30,610,299 10.2%
2111 18,950,618 6.3%
2100 8,920,362 3.0%
2075 1,609,360 0.5%
2050 290,351 0.1%
2025 52,384 0.0%

The extrapolation suggests that on our current rate of technological innovation we won’t achieve light speed until the late 2150s. The real problem is that we won’t achieve 0.1c until 2118! This is more than 100-years from today.

In my opinion this rate of innovation is too slow. Dr. David Neyland, of DARPA’s TTO was the driving force behind DARPA’s contribution to the 100-year Starship Study. When I met up with Dr. David Neyland during the first 100YSS conference, Sept. 30 to Oct 2, 2011, I told him “I’ll drop a zero”. That is I expect interstellar travel to be achievable in decades not centuries. And to ramp up our rate of technological innovation we need new theories and new methods of sifting through theories.

Previous post in the Kline Directive series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.