Toggle light / dark theme

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space. Here is Part 2.

What is a spaceport?

Wikipedia gives a very broad definition of a spaceport, that anything and everything that is used to launch vehicles into orbit, space and interplanetary missions are now termed spaceports. ICBM sites are termed launch sites. There is, however, a distinction between a military site and a commercial site. In the aviation world a military site is termed an ‘airbase’ while a commercial civilian site is termed an ‘airport’. Similarly in the marine world the respective terms are ‘naval base’ and ‘seaport’. In that vein there are ‘spacebases’ and ‘spaceports’. So bear in mind that not everything that is labeled a ‘spaceport’ is one.

As far as I can remember the term ‘spaceport’ caught the public’s imagination only recently with the advent of Spaceport America at Las Cruces, NM. So let’s clarify. A spaceport is port for launching vehicles into suborbital, orbital and interplanetary space whose primary mission is to support and manage commercial activities, not military, not government sponsored launches. And therefore, in the United States there are only 10 existing or proposed spaceports. They are (1)Mid-Atlantic Regional Spaceport, Wallops Island, VA (2)Cecil Field Spaceport, Jacksonville, FL (3)Spaceport Florida, Cape Canaveral (4)Spaceport Oklahoma, Burns Flat, OK (5)Spaceport America, Las Cruces, NM (6)Mojave Air and Spaceport, Mojave, CA (7) California Spaceport, Vandenberg Air Force Base, Lompac, CA (8)Kodiak Launch Complex, Kodiak Island, AK, (9) Spaceport Colorado, Watkins, CO and (10)Spaceport Hawaii, HI.

Map of US Spaceports as of Aug 26, 2011, Courtesy of US Department of Transportation.

The proposed spaceports outside of the United States that interest me are Spaceport Sweden, Spaceport Singapore, and Ras Al Khaimah Spaceport, UAE. Spaceport Sweden is the only one of the three that shows some form of life. The other two appear to be dormant with no signs of life. If one were to compare business concepts, Spaceport Sweden is closer to Spaceport America and Spaceport Singapore is similar to Spaceport Colorado.

Spaceports, real people doing real things to get into space.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

I commented on another blog recently about visiting Titan;

I do not know the pressure in these possible liquid oceans. But if it is, for example, 2 or 3 times that of the Marianas Trench then it is certainly a daunting proposition to explore them with human crewed submarines.

Tremendous pressure would mean transporting a titanium sphere several feet thick there. Not an incredible solution if you make it out of Lunar Titanium and Lunar Solar Power.
After reading Ozzie Zhener’s Green Illusions and the Dan Criswell Lunar Solar Power concept web entries I am becoming skeptical about any other possible approach having any relevance in my lifetime. I turned fifty recently and though they sent John Glenn on a mission, I am not confident of any migration into space anytime soon. This is a case of a 7 year old boy watching Star Trek and believing it might be something like this when I got as old as Bill Shatner was.….is.
If you trouble shoot the problem and use a decision tree to find solutions from a survey of available technology it becomes clear that the contender technologies are either available or readily available in the form of improved copies of half century old prototypes.
If you want to launch a program of under ice manned submarine expeditions to the outer planet moons you would have to start with a huge program of super heavy lift vehicles. This may sound expensive but unlike any other existing approach this single inflexible path has the potential of a hundred thousand fold return on investment.
By landing payloads at the lunar polar ice deposits, the exploitation of Lunar Solar Power resources can begin. I want Greenpeace, and every environmental conservation group that exists to understand that they can have there every dream come true if they ruthlessly exploit the solar energy striking the Moon’s surface. It should be understood that the Moon is dead. It is kind of like Nietsche saying God is dead and God then saying Nietsche is dead; do not worry about polluting the Moon- it is dead.
Once there is Lunar Solar Power to melt ore then large structures can be created. These gargantuan solar energy devices will rapidly cover vast swathes of the lunar surface. The more energy that pours into the metal shops the more energy will be produced for new metal shops. After the energy is available come the microwave transmitting antennae fields. Finally come the space power relay battle stations; these must launch to Earth geostationary orbit. Ever larger battle stations from the Moon will park themselves above a certain spot on the Earth where receiving dishes the size of entire valleys are being built. At some point done the road a river of clean electricity begins to flow from the Moon to Earth.
This rainbow bridge of microwave energy from the surface all the way up to geostationary orbit means powering a beam propulsion launch system of several thousand Isp with power all the way from the Moon. How quickly this airline to space begins operation depends entirely on the resources put into it. Exactly what proportion of this electricity shall be dedicated to establishing new worlds in space?
Though it seems impossible for us to imagine, after every single human being on Earth has a very high western standard of living, what will we do with the excess power? If that Lunar Solar Power is geometrically increasing and feeding itself by adding ever increasing and phenomenal amounts of electricity will it be shut down at that point?
I believe when the full of potential of space is explained to the public and they are convinced then no one will stop a geometric progression of Lunar Solar Power to facilitate new projects. The next big project will be constructing large structures in space at the nearest Libration point. Proposed in 1929 the Bernal Sphere may be a simple structure to melt with microwaves in zero gravity and form into a miles- in-diameter hollow sphere. How many miles in diameter is the question.
When the optimum form and thicknesses of the shell or shells-inside-the shells is determined this will determine the diameter of the sphere. Spheres 20 or 30 miles in diameter have the prospect of being a multi-purpose vehicle; Not only can they act as power relay stations but they can support populations of at least thousands in deep space. Propelled by H-bombs this first product of the industry of the Moon may fill many roles from the start a chain of these hollow moons will stretch out in solar orbit from the Earth.
Human beings have a lot of problem with scale. It takes a certain open mindedness to embrace construction projects of such vast scales. But we have only to look at the pyramids in Egypt to understand that large goals have been met since civilization has been in existence. The numbers tell us this chain of hollow moons can contain larger and larger populations as they grow in sized. If it is actually possible to feed materials into a solar furnace and blow up balloons several miles in diameter then the next factory to build may be around Mercury. Greenpeace may have trouble getting tourists to visit the abandoned Earth.
If all else fails, there is sports. Decades ago I read a short story, called “Moonball” I think, and it had professional sports played in superdomes under the Lunar Surface and televised to Earth.
We could have only females of chilbearing age allowed on the Moon and have them play sports. So if there is an engineered pathogen or the planet killer comet or asteroid hits or a super-volcano lights off the next ice age, we will always have our amazon women on the Moon to save our species.

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space.

On April 19, 2012, Gov. John Hickenlooper signed a bill that limited a spaceflight entity’s liability for spaceflight participants and paved the way for Spaceport Colorado’s development. The Front Range Airport Authority situated on 3,900 acres will allocate 900 acres towards the development and construction of Spaceport Colorado and ancillary facilities. The next steps are the completion of an environmental assessment, and feasibility and marketing study. This is expected to be completed by end of 2013.

In the 1995–96 I was Head of Corporate Planning at Westport, a $1 billion seaport infrastructure project in Malaysia, where I created and deployed the 7-hour port strategy, streamlined financial controls, container handling and container tariffs, reducing incoming (wharf to gate) dwell time to zero hours compared to the then world’s largest container port, Port Authority of Singapore’s (PSA) 18-hours. Westport was able to grow substantially, to the point where, in 2011, Westport handled 6.4 million TEUs compared to PSA’s 29.9 million TEUs. (TEU = Twenty-foot Equivalent Units or half a container)

So it caught my attention when Dennis Heap said Spaceport Colorado will be 33 miles (53 km) east of the city of Denver and about 6 miles (10 km) south of Denver International Airport (DIA).

DIA is the 5th busiest airport in the US, and the 11th busiest airport in the world. It is located centrally in the continental United States. Read more about DIA here. The plan is to build a rail link between DIA and the Spaceport.

Denver is the second largest city after Phoenix, AZ, in the Mountain States (Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, & Wyoming). It is the 23rd most populous city in the United States. Read more about Denver here.

After our visit with Dennis Heap, I took some photos of the Front Range Airport.

This photo above is of the view of the left side of the runway. In this photo you can see a white smudge just above the fourth plane (from the right). That white smudge is the Denver International Airport. The blue and white streak above ground on the horizon (left to middle of photo) is the majestic snowcapped Rocky Mountains. The city of Denver would be 33 miles (53 km) left or west of the Front Range Airport.

You can see from this picture that the Front Range Airport is a general aviation airport. That white smudge above the first plane (from the left) is the Denver International Airport. Note the clear blue skies. Colorado is the sunniest state in the US with more sunny days than even Hawaii.

This photo above was of the view to the right of the runway. Terminal building and offices are on the right of this photo. And if I have my bearing right, when built, Spaceport Colorado will be visible on the horizon.

I must congratulate Dennis Heap, Front Range Airport, and the many people, county and state officials and private companies who made this a reality. Public and private sectors cooperating to make things happen today. Real people doing real things to get into space sooner rather than later.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

“Metaballon anapaúetai” was the original 2-word phrase. Since the physical science of thermodynamics knows only one time’s arrow, Heraclitus appeared outdated for 1 ½ centuries.

Recently though, a second fundamental time’s arrow was found in nature. It defines cyodynamics, a full-fledged sister discipline to thermodynamics (cryós = cold, thermós = hot). Both jointly form the subject matter of statistical mechanics. The new subfield of cryodynamics applies whenever the forces acting between the particles in question are attractive. Thermodynamics applies when they are predominantly repulsive. Hot plasmas, for example, are governed by both disciplines – which fact puts fusion technology on a new promising basis.

The new combined discipline re-enables an eternally recycling perpetual-motion cosmos. The implied chaos-theoretic combined mixing and unmixing process, found by Anaxagoras to be implicit in Heraclitus‘ work, is thereby confirmed.

A third name needs to be added though, Einstein’s. The giant perpetual-motion machine would not work in the absence of general relativity forming the third element.

Hawking first glimpsed the fundamental importance of black-hole recycling. This fact places him into the same row – now four names. His insight was modified recently by a feature described by Oppenheimer and Snyder – the discoverers of a physical black-hole theory in 1939 – but which since has fallen into oblivion: a gravitational-redshift proportional time dilation. Black holes for this reason are never finished in finite outer time.

This fact means that a new form of Hawking radiation exists at the expense of the original, too simplistic picture: Whenever two black holes are about to merge, each of them unfinished with its eternally in-falling particles (whereby space is locally expanded by the same factor), the particles bound for the smaller black hole’s future horizon get “redirected” towards the prospective horizon of the larger black hole and in consequence get radiated away.

The reason is differential-topological in kind: Each particle has to cross an invisible boundary (a separatrix) existing between the two prospective attractors (black hole horizons). Namely, away from the smaller prospective black hole and towards the bigger one. On reaching the separatrix, however, the particle is freed, since a separatrix cannot be crossed so that the particle in question can escape towards the outer universe. The mechanism of this new Hawking radiation is more complicated and less co-determined by quantum mechanics than the old one. Nevertheless the intuition is the same: “Hawking evaporation.” Cosmic rays are its main consequence.

In this way, the cosmos is eternally “rejuvenated” with 50 percent of its black hole matter and hence all matter. The mental picture of Heraclitus is reconfirmed. I hope Hawking will reply.

I was told once the secret to a good movie is suspension of disbelief.

This is a hard nut to crack for anyone making a good sci-fi movie because the closer you get to suspending that disbelief the farther away you get from what is entertaining and familiar to moviegoers.

For the true space geek sci-fi movies invariably disappoint. Anyone familiar with the basics of space flight knows things about gravity and physics that ruin any possible suspension of disbelief in these movies.

We will see how close this one comes to addressing things like:

1. Water. The minimum radiation shielding for a deep space crew is about 14 feet of water massing 400 tons for a small capsule. A living space large enough to keep more than a couple people from going crazy over a mult-year mission is going to require a water shield be in the thousand or thousands of ton range. The only practical place to get this water is the Moon. This much water is also required to run a multi-year life support system.

2. Bombs. This massive water shield means only one kind of propulsion system will work; nuclear pulse propulsion which uses redesigned nuclear weapons to shove a spaceship faster and faster with clouds of superheated plasma. This cloud behind the ship is projected against a giant metal alloy pusher plate also massing several thousand tons. These bombs focus energy in a slug which is then blasted into a cloud that pushes the ship and the filler for these slugs can be melted ice from Europa for the return flight. The only practical place to launch such a mission is the moon. No lighting off nukes in Earth orbit please.

3. Gravity. Besides radiation shielding the other necessary requirement for a multi-year deep space mission is one gravity. The way to do this with a space ship of a few thousand tons is by splitting the ship in half when not using bombs and reeling out each half on a tether for several thousand feet and spinning them around each other. The pusher plate can be kept in the center of this system while the nuclear reactor and stores can be at one extreme and the shielded crew section at the other.

This is the basic minimum spaceship for a trip to the outer moons. How close will this movie answer these basic space geek requirements of Water, Bombs, and Gravity?

I am starving for some suspension of disbelief.

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

In a previous post on Technological Feasibility I had stated that a quick and dirty model shows that we could achieve velocity of light c by 2151 or the late 2150s. See table below.

Year Velocity (m/s) % of c
2200 8,419,759,324 2808.5%
2152 314,296,410 104.8%
2150 274,057,112 91.4%
2125 49,443,793 16.5%
2118 30,610,299 10.2%
2111 18,950,618 6.3%
2100 8,920,362 3.0%
2075 1,609,360 0.5%
2050 290,351 0.1%
2025 52,384 0.0%

That is, at the current rate of technological innovation we could as a civilization reach light speed in about 140 years. More importantly we could not even reach anywhere near that within the next 100 years. Our capability would be 6.3% of c.

The Lorentz-Fitzgerald transformation informs us light speed would require an infinite amount of energy (i.e. more than there is in the Universe!), thereby highlighting the weaknesses in these types of technological forecasting methods. But these models still serve a purpose. They provide some guidance as to what is possible and when. The operative word is guidance.

Rephrasing is required. Is the technological light speed horizon of the 2150s too far out? If you are as impatient as I am the answer is ‘yes’. It would not be in the spirit of the Kline Directive to accept a 2150s horizon. 2150s is for people with no imagination, people who have resigned to the inevitable snail’s progress of physics. Further, we now know the inevitable impossibility using our contemporary physics because of the 5 major errors.

Completing the Interstellar Challenge Matrix (ICH) gives:

PDF version available here.

What are we left with? We have to find new directions, new models, new mathematical constructions, that address all 5 errors. And in the spirit of the Kline Directive, there needs to be a better method of sifting through academic papers “ … to provide reasonability in guidance and correctness in answers to our questions in the sciences …”

What do we do for starters? Here are my initial recommendations are:

1. The physics community has to refocus on mathematical construction hypotheses.

2. More experimental physicist leading combined teams of experimental and theoretical physicist.

3. Prioritize research funding by Engineering Feasible Theories, 100-Year Theories, and only then Millennium Theories.

I started this series of blog posts in order to achieve interstellar travel sooner rather than later, but we as a community are heading in the wrong direction. It won’t work to build bigger carriages. It won’t work add more horses, as some would suggest. That would be like flogging a dead horse. We have to do something radically different. That is why the Kline Directive matters.

I have made the assumption that technological feasibility is a necessary step. Yes it is, given our lack of technological capability to reach the stars in a realistic and finite time frame. Technology feasibility very quickly leads back to the next question of commercial viability, the second step.

Future feasible technologies will iterate between technological feasibility and commercial viability until we can reach the stars in a manner we don’t have to ask the question, whom do we select to leave Earth?

Until then we are not ready!

Previous post in the Kline Directive series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

http://news.yahoo.com/blogs/ticket/build-death-star-petition-clears-threshold-obama-response-185314096–politics.html

When the possible mixes with fantasy it should turn peoples heads- it does not happen very often. But this toungue-in-cheek petition is actually a case of truth being so close to fiction and no one seems to be noticing. I have been posting in the comments section of Centauri Dreams lately due to my disappointment with the contributor situation on the lifeboat blog and I am now happy to share edited versions of them here.

December 11, 2012 at 7:50

It is now the second decade of the twenty first century and we actually have a
tremendous amount of technology available and devices that may have been tested in some form in the past and found to work quite well but by various circumstance did not enter production. The example that every real space nut is aware of is the Aerojet AJ-260 monolithic solid rocket booster. Each of these put out over 7 million pounds of thrust and would probably have been used in a pair with yet another aerojet product called the M-1 http://en.wikipedia.org/wiki/M-1_(rocket_engine) as a core liquid engine as in the Titan configuration. This was the logical progression of a more powerful partially reusable vehicle to replace the Saturn V; a vehicle with over twice the first stage thrust. Instead we tried to go cheap with the Space Shuttle and recieved zero ROI. In fact we have the ability to build much larger solid boosters of up to 325 inches. Built with submarine hull technology it is recovered at sea and resused. This system is the only practical reusable technology as the liquid shuttle motors turned out to be a total waste of time returning to earth for reuse.

We can look back a half century (!) and see that it was Aerojet who had the equipment to set up a base on the Moon. By comparison the equipment that SpaceX is pushing as the next generation is.….a hobby rocket. With a pair of the largest possible solid rocket boosters and a core cluster of liquid hydrogen/oxygen along with upper stages, the HLV is the most efficient method available for getting into space. Getting into space by landing a payload on the moon. Chemical propulsion is completely appropriate for getting to the Moon where atomic spaceships can be assembled, tested, and launched on missions to set up the next base of operations. Eventually the ability to build large spheres with solar energy and lunar ore will make Bernal Spheres several miles in diameter available. This size should not be surprising considering there is no gravity and solar energy can be manipulated to refine and form large sections for such a sphere.

What may be the perfect place to build Bernal Spheres may be the same locale proposed for the next NASA space station http://www.thespacereview.com/article/2165/1. With vast amounts of microwave energy beamed from the Moon and focused this may be the place to melt masses of ore with microwaves and blow them up like glass balls. Balls several miles in diameter to start with.

Accelerated by beam propulsion and decelerated by H-bombs these Bernal Spheres, first proposed in 1929, may reach speeds of 10 percent of light and be our first starships before the end of this century. If revivable cryopreservation is available then several thousand colonists could be carried and if not then a small generaqtion crew would propagate for the journey. Not only starflight may be accomplished but our Earth powered by Lunar Solar Power allowing a western quality of life with a very high standard of living for a population of 10 billion. No more have-nots. Beam propulsion energy beamed down from relays in orbit from the Moon would allow cheap lift to space a reality and millions leaving the planet everyday for Bernal Sphere Lives in the outer planets or the many or the few leaving on star treks. Except for cryopreservation and more refined beam technology this is all just technology from over a half a century ago. The refinements in microwave beaming have come about through clean fusion energy research devices used by Kevin Parkin in his propulsion research. http://thesis.library.caltech.edu/2405/1/Parkin-Thesis.pdf

December 11, 2012 at 17:21

One of my favorite talking points concerns military spending; we can spend the public treasure on training our young people to clear buildings with automatic weapons or we can train them to build spaceships. We can keep building nuclear aircraft carriers and submarines or we can build spaceships. The money is going to be spent and supposedly a democracy has the right to choose how. Considering the tens of thousands of heavy bombers built in world war two and the fleets of jet bombers built in the cold war, supporting a launch schedule of 50 to 100 super heavy lift vehicles a year is not only possible but actually a easy goal. I will now tread on tricky ground by characterizing in the same category as jumbo jets; only construction costs are being looked at.

Considering the construction practices and materials, you would think the cost for a super-heavy lift vehicle should be close to the fly away price of a jumbo jet. This is a vehicle that can land a space shuttle payload at the lunar poles. It is simply a matter of retooling factories and retraining people.

The same amount of money for a different defensive strategy based on creating energy in space instead of stealing it on Earth. I was never a fan of Space Solar Power because just like O’Neill figured out in the 70′s we cannot send these truly gargantuan power station constructs up from Earth. But I have recently become quite interested in Criswell’s Lunar Solar Power. Within a realistic survey of the technology available it does not seem like there is any flexible path to the stars- only LSP has the potential to get a large number of human beings off the Earth by eventually providing enough energy to make the holy grail of cheap access to space possible- by way of Beam Propulsion. There really is no other contender technology.

It works like this; chemical propulsion to get to the moon where nuclear missions can be launched and eventually enough power can be beamed to Earth to allow beam propulsion to replace chemical propulsion.

http://en.wikipedia.org/wiki/Military_production_during_World_War_II
Considering the 150,000 bombers built by the allies in World War II I think we certainly have the ability to send a hundred big rockets a year to the moon if a couple decades down the road we have enough power beamed back to give everyone on earth a house with cheap electricity and clean water. A very high standard of living for everyone on Earth with zero carbon emissions and pollution. With enough electricity giant plasma reformers can break down contaminated materials and even nuclear waste could be safely lifted off planet with beam launched vehicles. Eventually the population will drop as space habitats become extremely attractive places to live and Earth becomes a vacation destination.

The public really has no clue that such a future is entirely possible- there are no technical challenges that have not been answered or laws of physics that have to be broken.

Though I am not really a Zubrin fan and do not consider Mars a good destination for various reasons, a chapter in one of his books describing the superships built by the Chinese Empire and their abandonment is really the classic lesson that should be taught to the public anyone advocating space travel. There is nothing stopping the human race from going into space except our lack of vision.

The ploy to make money off militarizing space fell on it’s face decades ago. The main reason for this is that if you want clear the table you can send a couple vehicles up in satellite opposite orbits and explode ball bearing filled warheads; no more satellites. This is the equivalent of nuclear weapons making war obsolete on the surface below, Mutually Assured Destruction of everything in orbit makes any weapons on the moon or elsewhere redundant. The only airspace that counts is zero to a couple hundred miles straight up. It only takes a couple minutes to get up there and they cannot be stopped.

Launching from the Moon has no purpose because to even contemplate destroying all these ground launched space weapons and making Moon weapons relevant means profoundly contaminating the planet with fallout from nuclear weapons and that brings MAD back into play.

This is the main reason there is no army base on the moon right now. The secondary reasons why there are no military bases Beyond Earth Orbit is of course the expense- it is hard money when building weapons that sit on a runway or in a silo are easy money. It is easy to roll hundreds of defense contracts cumulatively worth hundreds of billions through the door but anything that goes into space with a human in it has a microscope on it. No profit there.

December 13, 2012 at 15:20

http://earthsky.org/space/asteroid-toutatis-passed-within-18-lunar-distances-on-december-11-12

The valid military mission for space is a CAPS Comet Asteroid Protection System; atomic spaceships armed with nuclear weapons. This also can answer another threat- engineered pathogens- by establishing survival colonies on other bodies in the solar system to guarantee species survival.

You would think with drones taking over pilot roles and Navy surface forces contracting that the military would be all over going into space. But the military mind is not famous for successfully preparing for the next war.

The war we are fighting right now is basically one of exploitation; the masses of poor are being manipulated with religion to violently oppose the status quo of haves and have nots on this planet. It took a while for the lightbulb to come on but it finally dawned on me recently that the solution to conflict on this planet is to provide every human being on earth those basic qualities of life that remove the percieved need for militant activity. The only system that has a strong possibility of winning the war against exploitation does so by exploiting Lunar Solar Power as advocated by David Criswell.

It is a truly epic project and is not a sure thing by any means; microwaving the atmosphere is going to have unintended consequences. But to bring the carbon footprint down to zero and have basically cheap endless electricity for the predicted 10 billion people on Earth may very well compensate for the downside.

December 5, 2012 at 16:05 Concerning Skylon:

The “point” is this- orbital speed is not the goal, escape velocity is. Getting to the moon with a worthwhile payload is the key to getting into space on Atomic Spaceships. LEO is just going in endless circles at very high altitude- going nowhere not fast enough. Chemical propulsion is appropriate for getting out of the magnetosphere without contamination the biosphere but that is all. The moon is the place to test, assemble, and launch the nuclear systems necessary to go anywhere in the solar system.
The holy grail is not Skylon or Falcon or anything resembling them; there is no cheap.
What is required is a couple thousand Isp and the only way to do that is beam propulsion. This line of reasoning ultimately ends with David Criswell’s concept of Lunar Solar Power.
The same magnitude of power necessary to even begin to think about any interstellar mission. Which, by the way, is what this blog (Centauri Dreams) is about.

December 6, 2012 at 16:24 –you cannot escape from the box you are trapped in- the money box. Whenever someone starts quoting economic formulae or strings of zeros it means only one thing; they are not going anywhere.

The reason to go into space is not filthy lucre. This is a question on which may hang the extinction or continuation of the human race. If money cannot be made then it will not happen is the common perception. It will not happen for money. The best way I have found to understand the problem is to look at the U.S. defense budget. It is so immense yet almost invisible to the public who do not question the vast mountains of treasure being expended on shiny cold war toys. It seems that endless billions of dollars are consigned to endless lists of defense contracts.
Anyone who says we do not have the money to accomplish massive projects in space is a liar or ignoring the trillion dollars a year that disappears into the military.
The truth is that weapons and black projects are easy money; they often have no mission or cannot do the supposed mission they are intended for. They do not have to- mostly they just sit somewhere or are “classified.” I know from personal experience that much of the money spent on defense goes into programs that do not work as advertised or do not even work at all.
Spaceships are hard money- they have to work. No profit there.

December 6, 2012 at 16:52

Private space propaganda has had the effect of making it seem all so easy. Electric propulsion will not get you through the Van Allen belts fast enough. So far only Hydrogen and Oxygen have the kick necessary to get people out there. The Rocket Equation is not going to change. As for “refueling in orbit”, that is the most magnificent job of pushing baloney ever accomplished. Repeat a lie enough and people believe it. Liquid hydrogen technology was perfected at tremendous expense but that technology does not include storing and transferring it in space. In fact- it has never even been attempted due to the nightmare plethora of problems that arise. It is ultra-cold exotic stuff that does not store well, requires pre-cooling with liquid helium to transfer, and since a transfer pre-cool cannot be done completely it generates boil-off. Re-liquifying the boil off results in the exothermic form of hydrogen which promulgates more boil-off in the storage tank. That is just the beginning; zero G effects and radiation make everything even more difficult.
This is why they store oxygen in high pressure tanks in the ISS. Hydrogen is not even a possibility.

Storable propellents make earth departure stages very large compared to hydrogen oxygen stages. What turns out to be the best solution is a Heavy Lift Vehicle just like the much maligned SLS. The Ayn Rand-in-space-club wail and gnash their teeth and dogpile anything that appears in the blogosphere criticizing their demi-god Musk and his hobby rocket tourist scam. But that does not change the fact that there is no cheap.

December 7, 2012 at 16:33

Reusability is a myth. It is why the RS-68 was built. The key to resuability is robust construction and maintainability. Both are impossible with rockets. Fill a egg thin container with super cold liquified gas, subject it to extremes of heat and vibration; it and the controlled bombs called rocket motors then get thrown away because it costs far more to inspect, rebuild, and fly them again. And anyway performing complex maintenance in space is not practical.
There is no unobtanium or wishalloy that is going to change that.

December 8, 2012 at 18:52

Concerning the statement that “everyone agrees” that lowering launch costs is key.

Really? It would seem that spending MORE money on space access would be key. Like that one trillion that will be spent on the F-35 stealth fighter over the next half century. It does not work as advertised and never will but shareholder checks are going out. This piece of junk may eventually drop some million dollar bombs on some illiterate mountain tribesmen to justify it’s existence. Considering we have reusable solid rocket boosters that put out 3.6 million pounds of thrust ready for production but instead complain they cost too much and want to go cheap, I think your point is actually ridiculous.

Concerning why I appear to angrily dismissive of private space;

I do not appear to be, I AM angrily dismissive. The are scamming the taxpayer. Hobby rockets and billionaut toursts are not a space program.

Considering how I seem to be mistaking cheap access to LEO as unimportant;

You seem to be mistaking Low Earth Orbit for deep space. You are talking about going in endless circles at very high altitude. I think it is a stupid waste of time to think that way. 30 years of tin cans going around and around is enough.

Concerning questioning the powers that be fairly and with respect about launch costs;

Fairness and respect have nothing to do with it. It is all about greed. The “recieved wisdom” is that oversight and transparency is above all things the most important factor in space exploration. We know this by the Apollo 1 fire- probably the single most important event in the race to the moon. It took some people burning to death to make us hold the profit motive in contempt and demand the job be done rigtht. We know this from the Space Shuttle Program that used a single cooked-up think tank study to promise ridiculously low prices per pound to orbit. And the pressures to launch and budget cuts that prevented any escape systems being fitted or retro-fitted causing the loss of two shuttle crews. There is no cheap.

Concerning my narrow view of practical propulsion schemes;

Like steam engines, we know the thermodynamic realities of rockets pretty well by now. Everything revolves around exhaust velocity which I hope can be grasped by comparing the numbers for rocket fuels and electric propulsion. Back in the 50′s ex-nazi/future nasa member Von Braun did calculations for reusing expensive rocket stages and came up with feeble payloads of a few tons delivered from massive lauch vehicles. Those calculations are just as valid today as they were then and lead to the same conclusion; our gravity well and rocket fuel exhaust velocities mean reusability is not practical. But there is obviously money to be made by lying about this and advertising the impossible.

December 10, 2012 at 19:37

Concerning the possibility of operating reusable launch vehicles and spacecraft like an airline;

Fantasy. You might as well be discussing star gates and hyperdrives. You get to your “hotel” and what happens next? Since liquid hydrogen depots are not going to happen for a very long time (I do not think ever) if you want to go anywhere except in circles you will have to board a Earth Departure Stage using storable propellents. The Isp numbers for UDMH and N204 mean your ticket to the moon is going be about the size of Saturn V first stage. Understanding these numbers is why we made it to the moon; it is obvious that the most efficient way is a direct launch from Earth by way of a Heavy Lift Vehicle with hydrogen upper stages.
This is the first thing that anyone interested in space travel should comprehend; THERE IS NO SUBSTITUE FOR A HLV WITH HYDROGEN UPPER STAGES!

This is the second thing that anyone interested in space travel should comprehend; CHEMICAL PROPULSION WILL ONLY GET YOU TO THE MOON- NUKES ARE NEEDED FOR HSF-BLO (human space flight beyond lunar orbit).

And this is the third thng that anyone interested in space travel should comprehend; MASSIVE GOVERNMENTAL RESOURCES ARE REQUIRED TO BUILD ATOMIC SPACESHIPS CAPABLE OF ESTABLISHING OFF WORLD COLONIES!
It is not the airlines and tourists are not going to Mars. It is a scam. There is no cheap.

December 10, 2012 at 20:17

Concerning space “entrepreneurs” hopes for the future;

They clearly hope that the public remains as stupid as they are for believing the fairy tales they are telling.

Any space program that can be called such begins where Apollo left off- with at least a Heavy Lift Vehicle launching every month landing payloads on the moon near ice deposits. There is no flexible path- it is very direct and determined by physics to be possible with the appropriate technology and massive funding. So far “new space” is just a way to funnel tax dollars into those “enterpreneurs” pockets for nothing in return.

December 12, 2012 at 14:45

“Getting to Mars with chemical rockets is totally possible if you start in LEO”

The last mission profile I read had a 100 ton Earth Departure Stage. There was no mention of how much radiation shielding the crew would have or if they had an artificial gravity system. The will suffer some permanent bone loss and serious debilitation without artificial gravity; without massive shielding on the order of a couple hundred tons the first bad solar event that heads their way will kill them if mutated pathogens do not do them in first.

Chemical Propulsion will only get you to the Moon. Nukes are required for Human Space Fight- Beyond Lunar Orbit (HSF-BLO). The mass of radiation shielding removes any possibility of chemical propulsion being practical. The possible half exception is launching a beam propelled stage from the Moon and use aerobraking to slow down on arrival to Mars. But that would require large solar power installations and antennae fields on the moon. And you might boost your way to Mars this way with a couple thousand Isp beam propelled Lunar Departure Stage but you have to get back.

In any case all the really interesting places to go- low gravity icy moons- are in the outer solar system. Mars may seem “just close enough” and being a planet may seem to make it more hospitable in some way but this, like reusability, is a myth.
Bombs are the only way to carry a massive shield and get out past the asteroid belt and back within the psychological limits of the crew- which are probably around 5 or 6 years. This Moonwater filled shielding shell massing a minimum of 400 tons is one of the key elements in a closed loop ecosystem capable of supplying clean air and water to a crew for those 5 or 6 years.

I do not think this situation is going to change when they inflate some playboy clubs for going in endless circles at very high altitude. Of course Private space advertises it that way.

December 12, 2012 at 20:31

Concerning the difficulty transporting nuclear fuel and an atomic spaceship to the Moon;

“pits” can be sent to the moon in a human-rated capsule with a very powerful escape system on the SLS. That is as safe as it gets and after a hundred and thirty shuttle missions with no escape system and with packaging designed to survive vehicle failure that is the risk that must be accepted. A typical deep space mission lasting 5 or more years would require a couple thousand of these pits. This nuclear material represents the base fuel that when formed for a pulse unit system has an Isp so far beyond any chemical fuel that you must admit any comparison is completely ridiculous.

While electric systems have high Isp’s, comparing their typically ounces of thrust to a bomb is even more ridiculous. The Moon has high quality ore to build alloy pusher plates in the thousands of tons range required- and thorium to fuel reactors for use in deep space. But in the short term thin discs can be sent to the moon on HLV’s and stacked to form thicker plates to construct the initial spaceships for the first bomb propelled deep space missions. The best destination for this mission is Ceres in my opinion. You can read more of my desperate plan to save the planet at–

voices.yahoo.com/water-bombs-8121778.html

I’d like to announce the start of the Indiegogo.com campaign for Software Wars, the movie. It is called Software Wars, but it also talks about biotechnology, the space elevator and other futuristic topics. This movie takes many of the ideas I’ve posted here and puts them into video form. It will be understandable to normal people but interesting to people like us. I would appreciate the support of Lifeboat for this project.

I recently began studying David Criswell’s Lunar Solar Power concept. If I was a conspiracy theory type I would say investigate Elon Musk. About the time Elon decided to go into space instead of into solar power, David was proclaiming he could solve the Earth’s energy problems by beaming microwave energy to Earth from the Moon. My suspicion is that Musk is building a microwave deathstar weapon on the Moon. Think about it, he has tested these rockets and they seem to work fine but how many has he built somewhere in secret and put on ships to launch from the poles? There may be space-x factories on the lunar poles busily building solar energy converters and microwave antennae fields and fabricating the gargantuan constructs necessary to be launched from the Moon and put in geostationary Earth orbit as relay stations. Darth Musk may be building Criswell’s system with a slight improvement- the microwaves can be focused on the Earth in catastrophic concentrations. This guy is the anti-christ; he will be able to conquer any country, even the United States, by using these geostationary microwave transmitters to incinerate any target on the surface of the Earth. The point being that there will be no reason to destroy a nation when you can sell them cheap electricity instead. In this concept, the armed forces of the planet also control the power supplies to the planet through a network of super power battle stations. The trick is building these giant space fortress power relay stations on the Moon and launching them into geostationary Earth orbit. This lunar launch technique would take advantage of beam propulsion and also insert into geostationary orbit using power beamed from the Moon. As soon as the power is available from geostationary orbit then powering a vehicle from the surface to escape velocity becomes practical. These launch vehicles will most likely be in the form of a disc; flying saucers. The Flying Saucer Airlines will finally whisk thousands and then millions of people into the heavens. It would be better if the government would set up this giant power system that will so forever and completely solve the Energy problems of Earth.

Please, Dear CERN:

Stop for just two weeks ahead of schedule and the whole planet will applaud.

Everyone is vaguely aware that there exists a 4 years old new result that totally upsets the properties of black holes – the little monsters that CERN is attempting to produce every day.

CERN’s sensors cannot detect them by design, but the first slow enough specimen to stay inside earth will shrink the latter to 2 cm in a few years’ time. No specialist on the planet contradicts my Telemach theorem, published in the African Journal of Mathematics.

The media know that CERN refuses to update its official safety report and its safety page for 4 years – because the named danger would have had to be mentioned for once. Acting while keeping silent is the strategy chosen by Director Rolf Heuer.

Today I am not criticizing him – he no doubt acts in subjective good faith. But I herewith publicly ask him for a Christmas present to the world: JUST TWO WEEKS!!!

Thank you very much.