Toggle light / dark theme

Losing hair can be a distressing experience for many people, but treatments are often ineffective, expensive or riddled with side effects. Could this development change that?

A study from Colombia University has shown blocking a certain family of enzymes can rapidly restore hair. The enzymes are called the Janus kinase (JAK) family, and two drugs have already been approved for blood diseases (ruxolitinib) and rheumatoid arthritis (tofacitinib), and are also undergoing other clinical trials.

Read more

The aim of the exercise is to develop rider-support systems similar to those we are seeing developed in automobiles to make driving safer. “We want to apply the fundamental technology and know-how gained in the process of this challenge to the creation of advanced rider safety and rider-support systems and put them to use in our current businesses, as well as using them to pioneer new lines of business,” says Yamaha’s release.

Read more

Substantially smaller and longer-lasting batteries for everything from portable electronic devices to electric cars could be come a reality thanks to an innovative technology developed by University of Waterloo researchers.

Zhongwei Chen, a chemical engineering professor at Waterloo, and a team of graduate students have created a low-cost battery using silicon that boosts the performance and life of lithium-ion batteries. Their findings are published in the latest issue of Nature Communications.

Waterloo’s silicon battery technology promises a 40 to 60 per cent increase in energy density, which is important for consumers with smartphones, smart homes and smart wearables.

Read more

Viruses are usually thought of as agents of disease. But for the first time, scientists are poised to bring to the US market a virus that can help thwart cancer, a development that could herald a new age of viral therapies.

Approved by the Food and Drug Administration on Tuesday for treating advanced-stage melanoma, the virus — called Imlygic, which was developed in part in a Massachusetts lab — is a modified version of the herpes virus that both attacks the cancer and sparks the immune system into action against tumors.

In clinical trials, it has helped some cancer patients achieve remission with few of the nasty side effects common to existing treatments. And as the first tumor-killing virus to receive the FDA’s blessing, Imlygic could accelerate the development of other viral therapies.

Read more

This means that BPG not only is way smaller than JPEG but also delivers a better quality. And that’s not all! It also supports animations!

And when I say animation, I actually say GIF-like movies with MP4 quality that are actually smaller than the mp4 it was built from.

Let’s see an example (I have not included a GIF example because the same quality size and frame rate means that the GIF will have exactly 33.8MB)

Read more

Site — http://goo.gl/oORnr
IMDB — http://goo.gl/0PQvB
Instagram — http://goo.gl/JiyAC
Twitter — http://goo.gl/Ne8ZE
LinkedIn — http://goo.gl/myBN0
Vimeo — http://goo.gl/c57k6
Genre: docudrama
Type: documentary
Year: 2011
Director: Misha Kostrov
Creative director: Eugene Sannikov
Producer: Victor Mirsky, Sergey Sozanovsky
Creative producer: Oksana Maidanskaya
Director of photography: Vladimir Kratinov
Scriptwriter: Nataliya Doilnitsyna
Аwards: Platinum Remi Award, WorldFest Houston 2013

The film tacks together two tales: a historical account of Tesla’s eventful life and his pioneering research into physics and bold experiments with electricity.

Suffering from a fatal malady as a child the future great physicist promised his parents that he would recover under the sole condition…if they allowed him to become an engineer. And he kept his promise. Never ending yearning for knowledge, research practice, creative endeavor, discoveries that have unfixed all established notions — that’s what was the characteristic of the great physicist. Nikola Tesla would always remain a scientist whose life was a sort of mystification rather than pure reality.

Read more

A new approach developed by researchers at the University of Waterloo could hold the key to greatly improving the performance of commercial lithium-ion batteries. The scientists have developed a new type of silicon anode that would be used in place of a conventional graphite anode, which they claim will lead to smaller, lighter and longer-lasting batteries for everything from personal devices to electric vehicles.

Graphite has served the lithium-ion battery world as material for negative electrodes well so far, but also presents something of a roadblock for improved capacity. This is due to the relatively small amount of energy it can store, which comes in at around 370 mAh/g (milliamp hours per gram). Silicon has become an increasingly popular substitute for battery researchers looking to up the ante, with a specific capacity of 4,200 mAh/g. However, it isn’t without its limitations either.

As silicon interacts with lithium inside the cell during each charge cycle, it expands and contracts by as much as as 300 percent. This immense swelling brings about cracks that diminish the battery’s performance over time, leading to short circuits and ultimately cell failure. Other recent attempts to overcome this problem have turned up battery designs that use sponge-like silicon anodes developed at the nanoscale, silicon nanowires measuring only a few microns long and ones that bring graphene and carbon nanotubes into the mix.

Read more

A Hall thruster is powering many of the satellites moving around Earth right now. It needs 100 million (yes, you read that right, 100 million) times less fuel than chemical thrusters. But it was never remotely sturdy enough to get anything to Mars—until now.

Typical chemical thrusters are pretty simple. Fuel combusts, gases shoot one way, and a rocket shoots the other way.

Ion thrusters are a little different. They contain charged electrodes, an anode and a cathode, and allow positively charged ions to shoot from the anode to the cathode. Thanks to momentum, the ions will “overshoot” the cathode. Under regular circumstances they’d be sucked back, but once they’ve cleared the cathode, they’re hit by a beam of electrons, neutralizing them and allowing them to go on their way without interference from the charged cathode. So the neutralized atoms shoot one way, and the rocket shoots another.

Read more

This piece is dedicated to Stefan Stern, who picked up on – and ran with – a remark I made at this year’s Brain Bar Budapest, concerning the need for a ‘value-added’ account of being ‘human’ in a world in which there are many drivers towards replacing human labour with ever smarter technologies.

In what follows, I assume that ‘human’ can no longer be taken for granted as something that adds value to being-in-the-world. The value needs to be earned, it can’t be just inherited. For example, according to animal rights activists, ‘value-added’ claims to brand ‘humanity’ amount to an unjustified privileging of the human life-form, whereas artificial intelligence enthusiasts argue that computers will soon exceed humans at the (‘rational’) tasks that we have historically invoked to create distance from animals. I shall be more concerned with the latter threat, as it comes from a more recognizable form of ‘economistic’ logic.

Economics makes an interesting but subtle distinction between ‘price’ and ‘cost’. Price is what you pay upfront through mutual agreement to the person selling you something. In contrast, cost consists in the resources that you forfeit by virtue of possessing the thing. Of course, the cost of something includes its price, but typically much more – and much of it experienced only once you’ve come into possession. Thus, we say ‘hidden cost’ but not ‘hidden price’. The difference between price and cost is perhaps most vivid when considering large life-defining purchases, such as a house or a car. In these cases, any hidden costs are presumably offset by ‘benefits’, the things that you originally wanted — or at least approve after the fact — that follow from possession.

Now, think about the difference between saying, ‘Humanity comes at a price’ and ‘Humanity comes at a cost’. The first phrase suggests what you need to pay your master to acquire freedom, while the second suggests what you need to suffer as you exercise your freedom. The first position has you standing outside the category of ‘human’ but wishing to get in – say, as a prospective resident of a gated community. The second position already identifies you as ‘human’ but perhaps without having fully realized what you had bargained for. The philosophical movement of Existentialism was launched in the mid-20th century by playing with the irony implied in the idea of ‘human emancipation’ – the ease with which the Hell we wish to leave (and hence pay the price) morphs into the Hell we agree to enter (and hence suffer the cost). Thus, our humanity reduces to the leap out of the frying pan of slavery and into the fire of freedom.

In the 21st century, the difference between the price and cost of humanity is being reinvented in a new key, mainly in response to developments – real and anticipated – in artificial intelligence. Today ‘humanity’ is increasingly a boutique item, a ‘value-added’ to products and services which would be otherwise rendered, if not by actual machines then by humans trying to match machine-based performance standards. Here optimists see ‘efficiency gains’ and pessimists ‘alienated labour’. In either case, ‘humanity comes at a price’ refers to the relative scarcity of what in the past would have been called ‘craftsmanship’. As for ‘humanity comes at a cost’, this alludes to the difficulty of continuing to maintain the relevant markers of the ‘human’, given both changes to humans themselves and improvements in the mechanical reproduction of those changes.

Two prospects are in the offing for the value-added of being human: either (1) to be human is to be the original with which no copy can ever be confused, or (2) to be human is to be the fugitive who is always already planning its escape as other beings catch up. In a religious vein, we might speak of these two prospects as constituting an ‘apophatic anthropology’, that is, a sense of the ‘human’ the biggest threat to which is that it might be nailed down. This image was originally invoked in medieval Abrahamic theology to characterize the unbounded nature of divine being: God as the namer who cannot be named.

But in a more secular vein, we can envisage on the horizon two legal regimes, which would allow for the routine demonstration of the ‘value added’ of being human. In the case of (1), the definition of ‘human’ might come to be reduced to intellectual property-style priority disputes, whereby value accrues simply by virtue of showing that one is the originator of something of already proven value. In the case of (2), the ‘human’ might come to define a competitive field in which people routinely try to do something that exceeds the performance standards of non-human entities – and added value attaches to that achievement.

Either – or some combination – of these legal regimes might work to the satisfaction of those fated to live under them. However, what is long gone is any idea that there is an intrinsic ‘value-added’ to being human. Whatever added value there is, it will need to be fought for tooth and nail.