Toggle light / dark theme

There’s filtration and then there’s filtration. Engineers in the US have been working on the latter, coming up with a new markedly more energy-efficient way of taking the salt out of seawater, which could deliver huge advantages in terms of providing people with access to drinking water and help combat problems like drought.

The researchers have developed a material that allows high volumes of water to pass through extremely tiny holes called ‘nanopores’ while blocking salt and other contaminants. The material they’re using – a nanometre-thick sheet of molybdenum disulphide (MoS2) riddled with these nanopore holes – is the most efficient of a number of thin-film membranes that the engineers modelled, filtering up to 70 percent more water than graphene.

“Even though we have a lot of water on this planet, there is very little that is drinkable,” said Narayana Aluru, a professor of mechanical science and engineering at the University of Illinois and leader of the study. “If we could find a low-cost, efficient way to purify sea water, we would be making good strides in solving the water crisis.”

Read more

Buying a car is a hellish process. The reward for spending hours researching the right one is a trip to a local dealership — an experience that assaults the nerves in such a way that it’s only rivaled by appointments with the dentist. But what if buying a car was easier than that? What if it was as easy as, say, a vending machine?

A few years ago, a company called Carvana followed in the footsteps of companies like CarMax by trying to move the car buying experience completely online. The process of purchasing a car on Carvana’s website includes all the steps that normally take place at a dealership: getting approved for and selecting financing, selecting a warranty, and signing the contract. It’s a process that, in an interview with The Verge, Carvana CEO Ernie Garcia is quick to point out takes many Carvana customers 20 minutes or less.

This left customers with just one dealership interaction: choosing pickup or delivery. And Garcia says that, more often than not, Carvana customers were choosing pickup — so much so that a subsequent pickup store in Atlanta was a rousing success. Now, though, Carvana is adding some spice to that experience.

Read more

Taiwanese PC manufacturer Asus says it’s building an augmented reality device and aims to release it next year. According to a report from CNET, Asus CEO Jerry Shen confirmed the plans during an earnings call on Wednesday, arguing that augmented reality or AR will be more useful than virtual reality. “You can make a real setting meld together with yourself and the AR portion,” said Shen. “Internally, we are talking about how to prepare.”

Unlike VR, augmented reality doesn’t show you a completely fabricated view, but instead overlays digital elements onto the real world. The current frontrunner in this nascent field is Microsoft’s HoloLens, which the company has shown off in a range of impressive demos. However, the HoloLens is hampered by a number of problems, including bulkiness, constrained viewing angles, and a high price tag, with Microsoft releasing a $3,000 HoloLens developer kit in the first quarter of 2016. (By comparison, Samsung’s Gear VR, a virtual reality headset powered by the company’s smartphones, became available for preorder this week for just $99.) Asus has previously hinted that it might build its own version of the HoloLens, but as a company best known for its budget laptops, tablets, and smartphones, we wouldn’t expect it to match Microsoft’s price.

Despite the lack of unknowns surrounding Asus’s announcement, it’s still interesting to see a company align itself with augmented, rather than virtual, reality. The Verge’s Adi Robertson has argued that the complete immersion of VR makes it difficult for multitasking, and that augmented reality, by comparison, is more practical. Asus apparently agrees. “We think AR will be very important for people’s lives,” said Shen according to CNET. “It should be next year when we come out with a product.”

Read more

It might not be too long before a trip to the grocery store involves dodging Tally, a new robot designed to tootle from aisle to aisle while taking note of stock levels.

Tally’s Silicon Valley creators, Simbe Robotics, point out that most retailers currently rely on IT systems and manual labor to manage inventory, but call this method “costly and inaccurate.” Tally can apparently do full-store audits in a fraction of the usual time, keeping staff up to date on what items are running low so that shelves can be quickly refilled.

Simbie says Tally’s ability to carry out such “repetitive and laborious” auditing tasks means human staff can get on with serving customers directly.

Read more

We’ve said it before: Mars’ moon Phobos is doomed. But a new study indicates it might be worse than we thought.

One of the most striking features we see on images of Phobos is the parallel sets of grooves on the moon’s surface.

They were originally thought to be fractures caused by an impact long ago. But scientists now say the grooves are early signs of the structural failure that will ultimately destroy this moon.

Read more

Yes, conceivably. And if/when we achieve the levels of technology necessary for simulation, the universe will become our playground. Eagleman’s latest book is “The Brain: The Story of You” (http://goo.gl/2IgDRb).

Follow Big Think here:
YouTube: http://goo.gl/CPTsV5
Facebook: https://www.facebook.com/BigThinkdotcom
Twitter: https://twitter.com/bigthink

Transcript — The big picture in modern neuroscience is that you are the sum total of all the pieces and parts of your brain. It’s a vastly complicated network of neurons, almost 100 billion neurons, each of which has 10,000 connections to its neighbors. So we’re talking a thousand trillion neurons. It’s a system of such complexity that it bankrupts our language. But, fundamentally it’s only three pounds and we’ve got it cornered and it’s right there and it’s a physical system.

The computational hypothesis of brain function suggests that the physical wetware isn’t the stuff that matters. It’s what are the algorithms that are running on top of the wetware. In other words: What is the brain actually doing? What’s it implementing software-wise that matters? Hypothetically we should be able to take the physical stuff of the brain and reproduce what it’s doing. In other words, reproduce its software on other substrates. So we could take your brain and reproduce it out of beer cans and tennis balls and it would still run just fine. And if we said hey, “How are you feeling in there?” This beer can/tennis ball machine would say “Oh, I’m feeling fine. It’s a little cold, whatever.”

It’s also hypothetically a possibility that we could copy your brain and reproduce it in silica, which means on a computer at zeroes and ones, actually run the simulation of your brain. The challenges of reproducing a brain can’t be underestimated. It would take something like a zettabyte of computational capacity to run a simulation of a human brain. And that is the entire computational capacity of our planet right now.

There’s a lot of debate about whether we’ll get to a simulation of the human brain in 50 years or 500 years, but those would probably be the bounds. It’s going to happen somewhere in there. It opens up the whole universe for us because, you know, these meat puppets that we come to the table with aren’t any good for interstellar travel. But if we could, you know, put you on a flash drive or whatever the equivalent of that is a century from now and launch you into outer space and your consciousness could be there, that could get us to other solar systems and other galaxies. We will really be entering an era of post-humanism or trans-humanism at that point.

Read more