Toggle light / dark theme

“Unplugged Performance thoroughly reworks the suspension with a custom race valved adjustable coilover suspension kit, along with billet adjustable front upper control arms, billet adjustable rear camber and toe arms and a beefier 3 way adjustable front/rear sway bar set with uprated bushings. The highly adjustable suspension and handling capabilities pair with massive 6 piston 15.5” uprated brakes and competition brake pads. Unplugged Performance 20” wheels shod with Michelin Cup 2 tires are then fitted. The wheels are custom machined out of 6061-T6 billet APP forgings, the same forgings used by Koenigsegg and Lamborghini, and every set is FEA optimized and specifically engineered to the specific build’s desired spec and use. Wheel weights range from 19.6–21.0lbs in 20” with tire sizings up to 305mm wide.”


While Tesla is working on a track-focused Model S, the Model 3 Performance is getting its own street-legal racing treatment from Unplugged Performance.

We previously reported on Unplugged Performance (UP), which is one of a few aftermarket accessories and performance upgrade companies focused solely on Tesla vehicles.

They are also the company behind ‘Tesla Corsa’, a new Tesla-only race track experience where owners get to safely explore the limits and performance of their vehicles.

While some high – end electric vehicles ( like the most expensive Teslas ) are starting to approach those kinds of ranges, it still takes around 50 minutes for a full charge using the most powerful superchargers available. That’s a long time to hang around if you’re doing a cross-country trip that requires multiple pit stops.

The result is range anxiety, where people worry about running out of juice and facing delays due to the long time it takes to recharge their car s. There are two ways to tackle the problem: building higher-capacity batteries or charging existing ones faster.

Bigger batteries are a tricky problem, because vehicles face a balancing act between weight an d capacity. After a certain point the extra weight of batteries cancels out the boost in power they provide. There’s plenty of work into batteries with better energy density—how much charge they can hold for a specific weight—but there aren’t any major breakthroughs on the horizon.

Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.

Currently, items like mobile phones, microwaves and car dashboards are assembled using adhesives. It is a quick and relatively cheap way to make products but, due to problems dismantling the various materials for different recycling methods, most of these products will be destined for landfill.

However, Dr. Barnaby Greenland, Lecturer in Medicinal Chemistry, working in conjunction with Stanelco RF Technologies Ltd and Prof Wayne Hayes at the University of Reading, may have found a solution.

This is amazing, it will save many lives!


A 14-year-old Pennsylvania girl has come up with an innovative way to get rid of blind spots before she can even legally get behind the wheel.

Alaina Gassler, from West Grove, presented her project — called ‘Improving Automobile Safety by Removing Blind Spots’ — during this year’s Society for Science and Public’s Broadcom MASTERS (Math, Applied Science, Technology and Engineering for Rising Stars).

Gassler won the Samueli Foundation Prize for her creativity — and a hefty $25,000 check. More than $100,000 was given out to 30 finalists at the award ceremony.

One-fifth the weight of steel but five times the strength, plant-based cellulose nanofiber (CNF) offers carmakers the opportunity to build strong, lightweight cars while sustainably removing as much as 2,000 kg (4,400 lb) of carbon from the car’s life cycle.

We’ve written before about the extraordinary properties of CNFs, which were last year demonstrated to be stronger than spider silk. Made essentially from wood, but chipped, pulped and boiled in chemicals to remove lignin and hemicellulose, it’s a highly condensed, lightweight and incredibly strong material that’s also very recyclable.

It can also, as it turns out, be used in manufacturing, where it can be injection molded as a resin-reinforced slurry to form complex shapes – and the Japanese Ministry of the Environment sees it as a potential way for automakers to reduce weight and sustainably reduce their carbon footprint.

Metasurfaces are optically thin metamaterials that can control the wavefront of light completely, although they are primarily used to control the phase of light. In a new report, Adam C. Overvig and colleagues in the departments of Applied Physics and Applied Mathematics at the Columbia University and the Center for Functional Nanomaterials at the Brookhaven National Laboratory in New York, U.S., presented a novel study approach, now published on Light: Science & Applications. The simple concept used meta-atoms with a varying degree of form birefringence and angles of rotation to create high-efficiency dielectric metasurfaces with ability to control optical amplitude (maximum extent of a vibration) and phase at one or two frequencies. The work opened applications in computer-generated holography to faithfully reproduce the phase and amplitude of a target holographic scene without using iterative algorithms that are typically required during phase-only holography.

The team demonstrated all-dielectric holograms with independent and complete control of the amplitude and phase. They used two simultaneous optical frequencies to generate two-dimensional (2-D) and 3D holograms in the study. The phase-amplitude metasurfaces allowed additional features that could not be attained with phase-only holography. The features included artifact-free 2-D holograms, the ability to encode separate phase and amplitude profiles at the object plane and encode intensity profiles at the metasurface and object planes separately. Using the method, the scientists also controlled the surface textures of 3D holographic objects.

Light waves possess four key properties including amplitude, phase, polarization and optical impedance. Materials scientists use metamaterials or “metasurfaces” to tune these properties at specific frequencies with subwavelength, spatial resolution. Researchers can also engineer individual structures or “meta-atoms” to facilitate a variety of optical functionalities. Device functionality is presently limited by the ability to control and integrate all four properties of light independently in the lab. Setbacks include challenges of developing individual meta-atoms with varying responses at a desired frequency with a single fabrication protocol. Research studies previously used metallic scatterers due to their strong light-matter interactions to eliminate inherent optical losses relative to metals while using lossless dielectric platforms for high-efficiency phase control—the single most important property for wavefront control.

In what is believed to be a transit industry first in the United States, TriMet’s all-electric buses will be powered by 100 percent wind energy. TriMet and project partner Portland General Electric made the historic announcement on Tuesday, April 16, 2019. As Oregon’s largest transit provider, TriMet has committed to a non-diesel bus fleet by 2040. The initial journey toward a non-diesel fleet now begins with battery-electric buses that will be powered by PGE’s Clean Wind℠ renewable energy program.

“Today, we are riding the winds of change. TriMet’s commitment to a zero-emissions bus fleet by 2040 and support of wind power put the agency and our region at the forefront of a cleaner future.”

“We are proud to support TriMet’s work to electrify transportation across our region. Powered by wind, this all-electric bus line is a sustainable transportation option for the community and another step closer to a clean energy future for Oregon.”