Toggle light / dark theme

In September 2018, United Nations secretary-general António Guterres gave a speech on the global lack of trust, or what he called a “trust deficit disorder.” He just gave a similar speech, this time discussing blockchain specifically. The organization isn’t just motivated to build a more sustainable world or reducing waste from their supply chain, but as American support has waned, donors are demanding assurance their donations are being spent for the purpose they were intended.


United Nations secretary-general António Guterres says the intergovernmental giant needs to embrace blockchain. In a statement provided to Forbes by the secretary-general’s office, Guterres touted the technology first made popular by bitcoin as a crucial component of the organization that generate’s $50 billion in revenue annually.

Coming at a time when the president of China has touted blockchain as a national priority, and the $6 billion United Nations Children’s Fund has started accepting bitcoin and ethereum donations for some of its projects, the statement from Guterres shows that cryptocurrency and the underlying blockchain technology is being seriously explored at the highest levels of the largest organizations in the world.

While China seems largely focused on using blockchain as a way to prevent money laundering and better track its citizens’ transactions, the United Nations work has been more focused on giving donors increased assurance their donations are being spent how they wish, while reducing waste in the organization’s giant supply chain.

Would be cool to see Tesla use more recycled components.


McDonald’s used to send 62 million pounds of coffee chaff to landfills. But the company partnered with Ford Motor Company with hopes to eliminate their waste to landfills. The research team at Ford has already been using agave, wheat, and even denim byproducts to make car parts. They discovered that chaff can be used as well. Here’s an inside look of the process.

—————————————————–

#Ford #McDonalds #TechInsider

Tech Insider tells you all you need to know about tech: gadgets, how-to’s, gaming, science, digital culture, and more.
Visit us at: https://www.businessinsider.com
TI on Facebook: https://www.facebook.com/techinsider
TI on Instagram: https://www.instagram.com/tech_insider/
TI on Twitter: https://twitter.com/techinsider
TI on Amazon Prime: http://read.bi/PrimeVideo
INSIDER on Snapchat: https://insder.co/2KJLtVo

How ford makes car parts from used mcdonald’s coffee beans.

Moon’s southern pole will be a good spot for an observatory that together with space-based telescopes help find dangerous asteroids. Russia plans to build one as part of an ambitious lunar base project.

Conquering the moon is on the Russian space agency’s to-do list for the not-so-distant future. Roscosmos is currently working on a comprehensive plan that the Russian government wants to see before allocating any money for it. Part of a permanent Russian base envisioned on the Moon will be given to an observatory that will serve as part of a “global system for tracking asteroid and comet threats,” a senior Roscosmos official said in a recent interview.

“The location selected for the base is southern pole of the moon. It has favorable relief and conditions: enough light for solar panels, constantly shadowed craters with ice reserves for fuel and raw material,” Aleksandr Bloshenko explained.

In the life extension movement, longevity escape velocity (sometimes referred to as Actuarial escape velocity[1]) is a hypothetical situation in which life expectancy is extended longer than the time that is passing. For example, in a given year in which longevity escape velocity would be maintained, technological advances would increase life expectancy more than the year that just went by.

Life expectancy increases slightly every year as treatment strategies and technologies improve. At present, more than one year of research is required for each additional year of expected life. Longevity escape velocity occurs when this ratio reverses, so that life expectancy increases faster than one year per one year of research, as long as that rate of advance is sustainable.[2][3][4]

The concept was first publicly proposed by David Gobel, co-founder of the Methuselah Foundation (MF). The idea has been championed by biogerontologist Aubrey de Grey[5] (the other co-founder of the MF), and futurist Ray Kurzweil,[6] who named one of his books, Fantastic Voyage: Live Long Enough to Live Forever, after the concept. These two claim that by putting further pressure on science and medicine to focus research on increasing limits of aging, rather than continuing along at its current pace, more lives will be saved in the future, even if the benefit is not immediately apparent.[2].

An international research group has applied methods of theoretical physics to investigate the electromagnetic response of the Great Pyramid to radio waves. Scientists predicted that under resonance conditions, the pyramid can concentrate electromagnetic energy in its internal chambers and under the base. The research group plans to use these theoretical results to design nanoparticles capable of reproducing similar effects in the optical range. Such nanoparticles may be used, for example, to develop sensors and highly efficient solar cells. The study was published in the Journal of Applied Physics.

While Egyptian are surrounded by many myths and legends, researchers have little scientifically reliable information about their physical properties. Physicists recently took an interest in how the Great Pyramid would interact with electromagnetic waves of a resonant length. Calculations showed that in the resonant state, the pyramid can concentrate in the its internal chambers as well as under its base, where the third unfinished chamber is located.

These conclusions were derived on the basis of numerical modeling and analytical methods of physics. The researchers first estimated that resonances in the pyramid can be induced by radio waves with a length ranging from 200 to 600 meters. Then they made a model of the electromagnetic response of the pyramid and calculated the extinction cross section. This value helps to estimate which part of the incident wave energy can be scattered or absorbed by the pyramid under resonant conditions. Finally, for the same conditions, the scientists obtained the electromagnetic field distribution inside the pyramid.

Today, IBM Research is building on a long history of materials science innovation to unveil a new battery discovery. This new research could help eliminate the need for heavy metals in battery production and transform the long-term sustainability of many elements of our energy infrastructure.

As battery-powered alternatives for everything from vehicles to smart energy grids are explored, there remain significant concerns around the sustainability of available battery technologies.

Many battery materials, including heavy metals such as nickel and cobalt, pose tremendous environmental and humanitarian risks. Cobalt in particular, which is largely available in central Africa, has come under fire for careless and exploitative extraction practices.1

Scientists have created thin films made from barium zirconium sulfide (BaZrS3) and confirmed that the materials have alluring electronic and optical properties predicted by theorists.

The films combine exceptionally strong light absorption with good charge transport—two qualities that make them ideal for applications such as photovoltaics and light-emitting diodes (LEDs).

In , for example, experimental results suggest that BaZrS3 films would be much more efficient at converting sunlight into electricity than traditional silicon-based materials with identical thicknesses, says lead researcher Hao Zeng, Ph.D., professor of physics in the University at Buffalo College of Arts and Sciences. This could lower solar energy costs, especially because the new films performed admirably even when they had imperfections. (Manufacturing nearly flawless materials is typically more expensive, Zeng explains.)

Engineers calculate the ultimate potential of next-generation solar panels

WEST LAFAYETTE, Ind. — Most of today’s solar panels capture sunlight and convert it to electricity only from the side facing the sky. If the dark underside of a solar panel could also convert sunlight reflected off the ground, even more electricity might be generated.

Double-sided solar cells are already enabling panels to sit vertically on land or rooftops and even horizontally as the canopy of a gas station, but it hasn’t been known exactly how much electricity these panels could ultimately generate or the money they could save.

Let nobody tell you that the second decade of the 21st century has been a bad time. We are living through the greatest improvement in human living standards in history. Extreme poverty has fallen below 10 percent of the world’s population for the first time. It was 60 percent when I was born. Global inequality has been plunging as Africa and Asia experience faster economic growth than Europe and North America; child mortality has fallen to record low levels; famine virtually went extinct; malaria, polio and heart disease are all in decline.

Little of this made the news, because good news is no news. But I’ve been watching it all closely. Ever since I wrote The Rational Optimist in 2010, I’ve been faced with ‘what about…’ questions: what about the great recession, the euro crisis, Syria, Ukraine, Donald Trump? How can I possibly say that things are getting better, given all that? The answer is: because bad things happen while the world still gets better. Yet get better it does, and it has done so over the course of this decade at a rate that has astonished even starry-eyed me.

Perhaps one of the least fashionable predictions I made nine years ago was that ‘the ecological footprint of human activity is probably shrinking’ and ‘we are getting more sustainable, not less, in the way we use the planet’. That is to say: our population and economy would grow, but we’d learn how to reduce what we take from the planet. And so it has proved. An MIT scientist, Andrew McAfee, recently documented this in a book called More from Less, showing how some nations are beginning to use less stuff: less metal, less water, less land. Not just in proportion to productivity: less stuff overall.