Toggle light / dark theme

By

Computerworld - China’s lunar probe, and the moon rover it carried, landed successfully Saturday night, marking a major accomplishment for the country’s space efforts.

This is the first time a spacecraft from China has landed on an extraterrestrial body. China becomes the third country, after the United States and Russia, to land a spacecraft on the moon.

China’s Chang’e-3 craft lifted off early on Dec. 2 on top of an enhanced Long March-3B rocket from the Xichang Satellite Launch Center in southwest China.

Read more

“When space traffic becomes routine, there’s going to be significant conflict between commercial air traffic and space traffic,” says Juan Alonso, a Stanford professor of aeronautics and astronautics.

Right now, orbital launches are infrequent — about 70 per year around the world. So if there is, say, a SpaceX Falcon 9 launch scheduled from Cape Canaveral, the FAA decrees the area to be a “special use airspace” and bars plane traffic from the area for hours to accommodate it.

But Alonso is thinking 5 to 7 years into the future. With space tourism carriers like Virgin Galactic and XCOR planning multiple suborbital flights per day, and orbital flyers like SpaceX, Sierra Nevada, and Bigelow sending people and material into orbit, the skies will be getting crowded. The suborbital “up-and-down” space tourism flights offered by carriers like Virgin Galactic and XCOR may number anywhere from several hundred to multiple thousands a year – from zero today. Airline passengers will be less than thrilled to accept a lengthy delay so a rock star can sing in space or a billionaire can hang out in a “space hotel.” Also, airlines lose money from delays, or from re-routing around special-use airspace, requiring extra fuel burn.

Read more

Allen McDuffee

Spying could become much easier if a new lightweight, folding satellite concept gets off the ground.

Darpa, the military’s futuristic research agency, says it has plans to “break the glass ceiling” of space telescopes by shooting a new design into orbit that’s made of plastic and unfolds into a mammoth satellite that would dwarf the world’s most famous telescopes.

Darpa’s Membrane Optical Imager for Real-Time Exploitation (MOIRE) program redesigns the traditional glass telescope into an orbital telescope that’s bigger and lighter than previous imaging satellites, making it easier to spy on larger areas and for longer periods of time.

Launched as a tightly packed cluster of petals 20 feet in diameter, MOIRE stretches to 68 feet across once it reaches 22,000 miles above the earth. From orbit, MOIRE could view approximately 40 percent of the earth’s surface at once while recording high resolution images and video, making it the ultimate spying satellite (Darpa notes that it could also be beneficial in weather forecasting and disaster response).

Read more

The Future of Skunkworks Management, Now! By Mr. Andres Agostini
SIMPLICITY
This is an excerpt from the conclusion section of, “…The Future of Skunkworks Management, Now!…” that discusses some management theories and practices and strategies. To view the entire piece, just click the link at the end of this post:
SOLUTION
Peter Drucker asserted, “…In a few hundred years, when the story of our [current] time is written from a long-term perspective, it is likely that the most important event those historians will see is not technology, not the Internet, not e-commerce [not so-called ‘social media’]. IT is an unprecedented change in the human condition. For the first time ─ literally ─ substantial and growing numbers of people have choices. for the first time, they will have to manage themselves. And society is totally unprepared for it…”
SYSTEM
Please see the full presentation at http://goo.gl/FnJOlg

Applied Omniscience in Transformative and Integrative Risk Management! By Mr. Andres Agostini
OMNISCIENCE
This is an excerpt from the presentation, “…Applied Omniscience in Transformative and Integrative Risk Management!…” that discusses some management theories and practices. To read the entire piece, just click the link at the end of article:

Please see the graphic at http://lnkd.in/dUstZEk

This is an excerpt from the conclusion section of, “…NASA’s Managerial and Leadership Methodology, Now Unveiled!..!” by Mr. Andres Agostini, that discusses some management theories and practices. To read the entire piece, just click the link at the end of this illustrated article and presentation:

superman
In addition to being aware and adaptable and resilient before the driving forces reshaping the current present and the as-of-now future, there are some extra management suggestions that I concurrently practice:

1. Given the vast amount of insidious risks, futures, challenges, principles, processes, contents, practices, tools, techniques, benefits and opportunities, there needs to be a full-bodied practical and applicable methodology (methodologies are utilized and implemented to solve complex problems and to facilitate the decision-making and anticipatory process).

The manager must always address issues with a Panoramic View and must also exercise the envisioning of both the Whole and the Granularity of Details, along with the embedded (corresponding) interrelationships and dynamics (that is, [i] interrelationships and dynamics of the subtle, [ii] interrelationships and dynamics of the overt and [iii] interrelationships and dynamics of the covert).

DETAIL    DETAIL    DETAILBoth dynamic complexity and detail complexity, along with fuzzy logic, must be pervasively considered, as well.

To this end, it is wisely argued, “…You can’t understand the knot without understanding the strands, but in the future, the strands need not remain tied up in the same way as they are today…”

For instance, disparate skills, talents, dexterities and expertise won’t suffice ever. A cohesive and congruent, yet proven methodology (see the one above) must be optimally implemented.

Subsequently, the Chinese proverb indicates, “…Don’t look at the waves but the currents underneath…”

2. One must always be futurewise and technologically fluent. Don’t fight these extreme forces, just use them! One must use counter-intuitiveness (geometrically non-linearly so), insight, hindsight, foresight and far-sight in every day of the present and future (all of this in the most staggeringly exponential mode). To shed some light, I will share two quotes.

The Panchatantra (body of Eastern philosophical knowledge) establishes, “…Knowledge is the true organ of sight, not the eyes.…” And Antonio Machado argues, “… An eye is not an eye because you see it; an eye is an eye because it sees you …”

Managers always need a clear, knowledgeable vision. Did you already connect the dots stemming from the Panchatantra and Machado? Did you already integrate those dots into your big-picture vista?

As side effect, British Prime Minister W. E. Gladstone considered, “…You cannot fight against the future…”

PARALLEL     PARALLEL      PARALLEL
3. In all the Manager does, he / she must observe and apply, at all times, a sine qua non maxim, “…everything is related to everything else…”

4. Always manage as if it were a “project.” Use, at all times, the “…Project Management…” approach.

5. Always use the systems methodology with the applied omniscience perspective.

In this case, David, I mean to assert: The term “Science” equates to about a 90% of “…Exact Sciences…” and to about 10% of “…Social Sciences…” All science must be instituted with the engineering view.

6. Always institute beyond-insurance risk management as you boldly integrate it with your futuring skill / expertise.

BEYOND     BEYOND       BEYOND
7. In my firmest opinion, the following must be complied this way (verbatim): the corporate strategic planning and execution (performing) are a function of a grander application of beyond-insurance risk management. It will never work well the other way around. Transformative and Integrative Risk Management (TAIRM) is the optimal mode to do advanced strategic planning and execution (performing).

TAIRM is not only focused on terminating, mitigating and modulating risks (expenses of treasure and losses of life), but also concentrated on bringing under control fiscally-sound, sustainable organizations and initiatives.

TAIRM underpins sensible business prosperity and sustainable growth and progress.

8. I also believe that we must pragmatically apply the scientific method in all we manage to the best of our capacities.

If we are “…MANAGERS…” in a Knowledge Economy and Knowledge Era (not a knowledge-driven eon because of superficial and hollow caprices of the follies and simpletons), we must do therefore extensive and intensive learning and un-learning for Life if we want to succeed and be sustainable.

As a consequence, Dr. Noel M. Tichy, PhD. argues, “…Today, intellectual assets trump physical assets in nearly every industry…”

Consequently, Alvin Toffler indicates, “…In the world of the future, THE NEW ILLITERATE WILL BE THE PERSON WHO HAS NOT LEARNED TO LEARN…”

We don’t need to be scientists to learn some basic principles of advanced science.

Accordingly, Dr. Carl Sagan, PhD. expressed, “…We live in a society exquisitely dependent on science and technology, in which hardly anyone knows about science and technology…” And Edward Teller stated, “…The science of today is the technology of tomorrow …”

And it is also crucial this quotation by Winston Churchill, “…If we are to bring the broad masses of the people in every land to the table of abundance, IT CAN ONLY BE BY THE TIRELESS IMPROVEMENT OF ALL OF OUR MEANS OF TECHNICAL PRODUCTION…”

I am not a scientist but I tirelessly support responsible scientists and science. I like scientific and technological knowledge and methodologies a great deal.

Chiefly, I am a college autodidact made by his own self and engaged into extreme practical and theoretical world-class learning for Life.

APPROACH    APPROACH     APPROACH9. In any management undertaking, and given the universal volatility and rampant and uninterrupted rate of change, one must think and operate in a fluid womb-to-tomb mode.

The manager must think and operate holistically (both systematically and systemically) at all times.

The manager must also be: i) Multidimensional, ii) Interdisciplinary, iii) Multifaceted, iv) Cross-functional, and v) Multitasking.

That is, the manager must now be an expert state-of-the-art generalist and erudite. ERGO, THIS IS THE NEWEST SPECIALIST AND SPECIALIZATION.

Managers must never manage elements, components or subsystems separately or disparately (that is, they mustn’t ever manage in series).

Managers must always manage all of the entire system at the time (that is, managing in parallel or simultaneously the totality of the whole at once).

10. In any profession, beginning with management, one must always and cleverly upgrade his / her learning and education until the last exhale.

An African proverb argues, “…Tomorrow belongs to the people who prepare for it…” And Winston Churchill established, “…The empires of the future are the empires of the mind…” And an ancient Chinese Proverb: “…It is not our feet that move us along — it is our minds…”
DESTINY       DESTINY       DESTINY
And Malcolm X observed, “…The future belongs to those who prepare for it today…” And Leonard I. Sweet considered, “…The future is not something we enter. The future is something we create…”

And finally, James Thomson argued, “…Great trials seem to be a necessary preparation for great duties …”

AGE       AGE         AGE
Consequently, Dr. Gary Hamel, PhD. indicates, “…What distinguishes our age from every other is not the world-flattening impact of communications, not the economic ascendance of China and India, not the degradation of our climate, and not the resurgence of ancient religious animosities. RATHER, IT IS A FRANTICALLY ACCELERATING PACE OF CHANGE…”

Please see the full presentation at http://goo.gl/8fdwUP

richard branson virgin galactic

Good news, future space travelers: Now you can enter the void without bringing your wallet.

U.K. business magnate Richard Branson announced Friday that his commercial space travel venture, Virgin Galactic, will allow customers to pay for their flights with the digital currency Bitcoin.

“Virgin Galactic is a company looking into the future, so is Bitcoin. So it makes sense we would offer Bitcoin as a way to pay for your journey to space.” Branson wrote in a blog post.

“A lot of the people who have joined Bitcoin are tech-minded people, as are many of our current future astronauts.”

Read more

In our on-going ambitions to colonise space — and our search for exo-planets in goldilocks zones, it is often overlooked that the most Earth-like area known to us is in our own Solar System, and very nearby — the upper reaches of the Venusian troposphere.

Whilst the surface of Venus invokes classical images of Hell — a dark sea of fire and brimstone, where temperatures raise to an incredible 450°C — hot enough to melt lead, tin and zinc, and pressurised to such an extent (92 bar) that in these conditions the atmosphere ghosts in and out of an ocean of supercritical carbon dioxide — sulphur dioxide tints the air, and sulphuric acid rains down on volcanic plains. One just needs to look to the skies…

At about 50 km to 60 km above the surface, the upper reaches of the Venusian troposphere, the environment is quite different. At these high altitudes the temperature is in our comfort zone of 0°C to 50°C, and the air pressure similar as habitable regions of Earth.
Havens over Hell - Ecosystems of the Venetian Tropopause

An atmosphere rich in carbon dioxide (96.5%) and abundant solar radiation, the conditions are ideal for photosynthesis. One could imagine solar energy powered crafts could easily sustain ecosystems where the ideal conditions for photosynthesis ensure an abundant source of food and oxygen for inhabitants. The solar energy here is abundant and in all directions — the high reflectivity of clouds below causes the amount of light reflected upward to be nearly the same as that coming in from above, with an upward solar intensity of 90% — so aircraft would not need to concern about electricity or energy consumption. Indeed, that energy would not even be needed to keep the craft airborne — as the oxygen store would also double up as a natural lifting agent for such aircrafts, as in the Venusian atmosphere of carbon dioxide, oxygen is a lifting gas — in the same way helium is a lifting gas on Earth. With temperature, pressure, gravity, and a constant source of food and oxygen via plant growth all accounted for, not to mention close proximity to Earth, waste & water recycling would be the main challenge for the permanence of such Venusian aircraft — where the initial establishment of a balanced ecosystem is key. The engineering challenge would be far less than that of establishing a colony or base on Mars. Just don’t look down!

I am very pleased to say that the 2013 100YSS conference held in Houston, TX, was a success. I met a lot of like minded people — people who want to make interstellar travel a reality — though we differ in our opinions of when.

I was especially pleased to be able to visit with Mae Jemison, Jill Tarter and Pamela Contag. These three are amazing, shepherding us along. Shepherding us? Yes, are a loose collection of visionaries going every which way.

Mae Jemison
Jill Tarter
Pamela Contag

Most of us know helium as that cheap inert lighter-than-air gas we use to fill party balloons and inhale to increase voice-pitch as a party trick for kids. However, helium has much more important uses to humanity — from medical (e.g. MRIs), military and defense (submarine detectors use liquid helium to clean up noisy signals), next-generation nuclear reactors, space shuttles, solar telescopes, infra-red equipment, diving, arc welding, particle physics research (the super-magnets in particle colliders rely on liquid helium), the manufacture of many digital devices, growing silicon crystals, the production of LCDs and optical fibers [1].

The principal reason helium is so important is due to its ultra-low boiling-point and inert nature making it the ultimate coolant of the human race. As the isotope helium-3, helium is also used in nuclear fusion research [2]. However, our Earth supplies of helium are being used at an unprecedented rate and could be depleted within a generation [4] and at the current rate of consumption we will run out within 25 to 30 years. As the gas is often thought of as a cheap gas it is often wasted. However, those who understand the situation, such as Prof Richardson, co-chair of a recent US National Research Council inquiry into the coming helium shortage, warn that the gas is not cheap due to the supply being inexhaustible, but because of the Helium Privatisation Act passed in 1996 by the US Congress.

Helium only accounts for 0.00052% of the Earth’s atmosphere and the majority of the helium harvested comes from beneath the ground being extracted from minerals or tapped gas deposits. This makes it one of the rarest elements of any form on the planet. However, the Act required the helium stores [4] held underground near Amarillo in Texas to be sold off at a fixed rate by 2015 regardless of the market value, to pay off the original cost of the reserve. The Amarillo storage facility holds around half the Earth’s stocks of helium: around a billion cubic meters of the gas. The US currently supplies around 80 percent of the world’s helium supplies, and once this supply is exhausted one can expect the cost of the remaining helium on Earth to increase rapidly — as this is in all practicality quite a non-renewable resource.

There is no chemical way of manufacturing helium, and the supplies we have originated in the very slow radioactive alpha decay that occurs in rocks. It has taken 4.7 billion years for the Earth to accumulate our helium reserves, which we will have exhausted within about a hundred years of the US’s National Helium Reserve having been established in 1925. When this helium is released to the atmosphere, in helium balloons for example, it is lost forever — eventually escaping into space [5][6]. So what shall we do when this crucial resource runs out? Well, in some cases liquid nitrogen (−195°C) may be adopted as a replacement — but in many cases liquid nitrogen cannot be used as a stand alone coolant as tends to be trickier to work with (triple point and melting point at around −210°C) — so the liquid helium is used because it is capable of staying liquid at the extreme cool temperatures required. No more helium means no more helium liquid (−269°C) that is used to cool the NMR (nuclear magnetic resonance apparels), and in other machines such as MRI scanners. One wonders therefore must we look towards space exploration to replenish our most rare of resources on Earth?

Prepare Uranus - A view of Uranus

Helium is actually the second most abundant resource in the Universe, accounting for as much as 24 percent of the Universe’s mass [7] — mostly in stars and the interstellar medium. Mining gas giants for helium has been proposed in a NASA memorandum on the topic [8] which have also have great abundance of this gas, and it has been suggested that such atmospheric mining may be easier than mining on the surfaces of outer-planet moons. While this had focused on the possibility of mining Helium-3 from the atmosphere of Jupiter, with inherent complications of delta-V and radiation exposure, a more appropriate destination for mining regular helium may rest with the more placid ice-giant Uranus (not considered in the memorandum as the predicted concentration of Helium-3 in the helium portion of the atmosphere of Uranus is quite small). Leaving aside specific needs for Helium-3 which can be mined in sufficient volume much closer — on our Moon [9], a large-scale mining mission to Uranus for the more common non-radioactive isotope could ensure the Earth does not have to compromise so many important sectors of modern technology in the near future due to an exhaustion of our helium stock. A relatively lower wind speed (900 km/h, comparing favorably to 2,100 km/h on Neptune), with a lower G-force (surface gravity 0.886 g, escape velocity 21.3 km/s) [10] and an abundance of helium in its atmosphere (15 ± 3%) could make it a more attractive option, despite the distances (approx 20 AU), extreme cold (50-70K) and radiation belts involved. Rationalising complexities in radiation, distance, time and temperatures involved for human piloting of such a cargo craft, it could be considered more suited to an automated mission, remote-controlled under robotics similar to orbiter probes — even though this would introduce an additional set of challenges — in AI and remote control.

However, we have a Catch 22 — NASA space programs use the gas to aid their shuttles [12]. Liquid fuels are volatile. They are packed with corrosive material that could destroy a spacecraft’s casing. To avoid this problem, a craft is filled with helium gas. If this could be replaced in such shuttles with some alternative, and advances in space transportation made to significantly increase the cargo of such ships over interplanetary-distances, perhaps a case could be made for such ambitious gas mining missions, though at present given current NASA expenditure, this would seem like fantasy [13]. Realistic proposals for exploration of Uranus [14] fall far short of these requirements. Helium is a rare and unique element we need for many industrial purposes, but if we don’t conserve and recycle our helium, we are dooming mankind to a future shortage of helium, with little helium left for future generations here on Earth [15] — as for now, replenishing such from space seems like a rather long shot.

————————————————

[1] 8 Surprising High-Tech Uses for Helium — TechNewsDaily
http://www.technewsdaily.com/5769-8-surprising-high-tech-helium.html
[2] Helium-3 as used in Nuclear Fusion Research
http://en.wikipedia.org/wiki/Helium-3
[3] The world is running out of helium — Nobel prize winner Prof Robert Richardson.
http://phys.org/news201853523.html#jCp
[4] The Federal Helium Reserve
http://www.blm.gov/nm/st/en/prog/energy/helium/federal_helium_program.html
[5] Why the World Will Run Out of Helium
http://scienceblogs.com/startswithabang/2012/12/12/why-the-world-will-run-out-of-helium/
[6] Will We Run Out of Helium?
http://chemistry.about.com/b/2012/11/11/will-we-run-out-of-helium.htm
[7] Where Is Helium Found — Universe Today

Where is Helium Found


[8] Bryan Palaszewski. “Atmospheric Mining in the Outer Solar System“
http://www.grc.nasa.gov/WWW/RT/2005/RT/RTB-palaszewski1.html
[9] Mining the Moon for Helium-3 — RocketCitySpacePioneers
http://www.rocketcityspacepioneers.com/space/mining-the-moon-for-helium-3
[10] Uranus — Physical characteristics
http://en.wikipedia.org/wiki/Uranus
[11] Uranus’s Magnetosphere — NASA Voyager VPL
http://voyager.jpl.nasa.gov/science/uranus_magnetosphere.html
[12] Space shuttle use of propellants and fluids — NASA KSC
http://www-pao.ksc.nasa.gov/kscpao/nasafact/pdf/ssp.pdf
[13] Project Icarus: The Gas Mines of Uranus
http://news.discovery.com/space/project-icarus-helium-3-mining-uranus-110531.htm
[14] The case for a Uranus orbiter, Mark Hofstadter et al.
http://www.lpi.usra.edu/decadal/opag/UranusOrbiter_v7.pdf
[15] Why the World Will Run Out of Helium
http://scienceblogs.com/startswithabang/2012/12/12/why-the-world-will-run-out-of-helium/