Toggle light / dark theme

A Russian cosmonaut and astronauts from the United States and Canada have returned to Earth after spending more than 200 days on board the International Space Station.

Oleg Kononenko with the Russian space agency Roscosmos, Anne McClain of NASA and Canadian Space Agency astronaut David Saint-Jacques landed aboard Russia’s Soyuz MS-11 spacecraft on Monday (June 24). Lowered by parachute and slowed by braking thrusters, the capsule touched down southeast of the town of Dzhezkazgan on the steppe of Kazakhstan at 10:47 p.m. EDT (0247 GMT or 8:47 a.m. local time on June 25).

The landing brought to a close the crew members’ 204-day mission, which saw Kononenko, McClain and Saint-Jacques serve on the space station’s 58th and 59th expedition crews. The trio arrived at the orbiting laboratory on Dec. 3, 2018.

With Earth-like canyons and oceans of liquid methane, Saturn’s moon Titan is one of the most fascinating places in the solar system. To better understand this weird world, scientists recreated Titan’s alien oceans in the lab, producing new types of crystals that don’t occur naturally on Earth but may form a common crust on Titan.

https://youtu.be/e5nJA8Hkvyc

Space technology expert and former Area 51 rocket designer David Adair will show you visuals and graphics of what the Aerospace Community had intended to build in space with the Shuttle program. These projects have never been seen before or announced to the public.

Learn about: Space Stations, Space Manufacturing, Space Based Medicines and Micro-Gravity Processing that the Aerospace Corporations wanted to build but were told NO by NASA because it was ‘too much industrialization of space’. Prepare to be amazed at the possibilities that exist! Meet and hear from one of the most exceptional rocket scientists of our time.

On a sofa in the corner of the room, a cat is purring. It seems obvious that the cat is an example of life, whereas the sofa itself is not. But should we trust our intuition? Consider this: Isaac Newton assumed a universal time flowing without external influence, and relative time measured by clocks – just as our perception tells us. Two centuries later, Albert Einstein dropped the concept of universal time, and instead introduced a concept of time measured only locally by clocks. Who before Einstein would have thought that time on the Sun, the Moon, and even on each of our watches runs at slightly different rates – that time is not a universal absolute? And yet today our cellphones must take this into account for a GPS to function.


Life ≠ alive.

A cat is alive, a sofa is not: that much we know. But a sofa is also part of life. Information theory tells us why.

Michael Lachmann & Sara Walker

Outdoor sport brand Goldwin and Japanese company Spiber developed the Moon Parka, a ski jacket made from synthetic spider silk.

The parka was originally to be released by The North Face, marketed by Goldwin, in 2016, but its release was postponed. Back then, Spiber’s QMONOS was said to be the world’s first successfully-produced synthetic spider silk material (since then, other brands have succeeded in making products with this material, like Bolt Threads and Adidas).

Currently, most sports apparel is made from synthetic materials such as polyester and nylon. These materials are made using petroleum, and consume massive amounts of energy to produce.

While intense magnetic fields are naturally generated by neutron stars, researchers have been striving to achieve similar results for many years. UC San Diego mechanical and aerospace engineering graduate student Tao Wang recently demonstrated how an extremely strong magnetic field, similar to that on the surface of a neutron star, can be not only generated but also detected using an X-ray laser inside a solid material.

Wang carried out his research with the help of simulations conducted on the Comet supercomputer at the San Diego Supercomputer Center (SDSC) as well as Stampede and Stampede2 at the Texas Advanced Computing Center (TACC). All resources are part of a National Science Foundation program called the Extreme Science and Engineering Discovery Environment (XSEDE).

“Wang’s findings were critical to our recently published study’s overall goal of developing a fundamental understanding of how multiple laser beams of extreme intensity interact with matter,” said Alex Arefiev, a professor of mechanical and aerospace engineering at the UC San Diego Jacobs School of Engineering.

Thousands of years ago, glaciers covered much of the planet. Oceans receded as water froze in massive sheets of ice blanketing the North American continent. As the ice age ended, glaciers melted. Massive river deltas flowed out across the continental shelf. The oceans rose, and fresh water was trapped in sediments below the waves. Discovered while drilling for oil offshore in the 1970s, scientists thought these “isolated” pockets of fresh water were a curiosity. They may instead prove to be a parched world’s newest source of fresh water.

As told in the latest issue (paywall) of the peer-reviewed journal Scientific Reports, scientists from Columbia University and the Woods Hole Oceanographic Institution spent 10 days on a research ship towing electromagnetic sensors from New Jersey to Massachusetts. By measuring the way electromagnetic waves traveled through fresh and saline water, researchers mapped out fresh-water reservoirs for the first time.

It turns out the subterranean pools stretch for at least 50 miles off the US Atlantic coast, containing vast stores of low-salinity groundwater, about twice the volume of Lake Ontario. The deposits begin about 600 ft (183 m) below the seafloor and stretch for hundreds of miles. That rivals the size of even the largest terrestrial aquifers.

Scientists have discovered an unexpectedly simple formula that governs one of the most seemingly unknowable limits in physics: determining how much of an electric field a water droplet can withstand before it will burst.

This infinitesimal phenomenon has been studied by physicists for decades, but while the overall concept may be easy to imagine, discerning the mathematical relationships that underpin such electrified explosions has been anything but.

Now that it’s been figured out, scientists say this one formula could lead to new advancements in everything from space propulsion to mass spectrometry, high-resolution printing, air purification, molecular analysis, and more.