Toggle light / dark theme

Next stop? Saturn’s moon Titan!

Titan, an analog to the early 🌎, can provide clues to how life may have arisen on our planet. Working with the JHU Applied Physics Laboratory (APL), we’ll send our new mission #Dragonfly to take to the skies in search for the building blocks of life: https://go.nasa.gov/2Nv0Eb0

A team of researchers affiliated with several institutions in Spain and the U.S. has announced that they have discovered a new property of light—self-torque. In their paper published in the journal Science, the group describes how they happened to spot the new property and possible uses for it.

Scientists have long known about such properties of light as wavelength. More recently, researchers have found that light can also be twisted, a property called . Beams with highly structured angular momentum are said to have orbital angular momentum (OAM), and are called . They appear as a helix surrounding a common center, and when they strike a flat surface, they appear as doughnut-shaped. In this new effort, the researchers were working with OAM beams when they found the light behaving in a way that had never been seen before.

The experiments involved firing two lasers at a cloud of argon gas—doing so forced the beams to overlap, and they joined and were emitted as a single beam from the other side of the argon cloud. The result was a type of vortex beam. The researchers then wondered what would happen if the lasers had different orbital angular momentum and if they were slightly out of sync. This resulted in a beam that looked like a corkscrew with a gradually changing twist. And when the beam struck a , it looked like a crescent moon. The researchers noted that looked at another way, a at the front of the beam was orbiting around its center more slowly than a photon at the back of the . The researchers promptly dubbed the new property self-torque—and not only is it a newly discovered property of light, it is also one that has never even been predicted.

Do you know how to maintain a family-sized garden without unlimited soil, natural sunlight and Earth’s gravity? If the answer is yes, then call NASA.

The Fairchild Tropical Botanic Garden in Miami in partnership with NASA is calling all “makers” to participate in its “Growing Beyond Earth Maker Contest.” The challenge is to reinvent the systems used to grow on the International Space Station and beyond.

Fairchild and NASA began their partnership in 2015 to find more ways to sustain plant life in . Last summer, the received a nearly $750,000 grant from NASA to support its Growing Beyond Earth Innovation Studio, a community work space dedicated to the technology of growing food.

Scientists found a way to make sense of particularly chaotic events in nature.

Thanks to a new set of equations for modeling turbulence, scientists can now better predict things like how galaxies form in distant space, complex weather patterns here on Earth, and nuclear fusion. According to the research, published this Spring in the journal Physical Review Letters, turbulence may start out chaotic but then falls into a more uniform pattern that scientists can readily model and understand.

Physicists at the National Institute of Standards and Technology (NIST) have teleported a computer circuit instruction known as a quantum logic operation between two separated ions (electrically charged atoms), showcasing how quantum computer programs could carry out tasks in future large-scale quantum networks.

Quantum teleportation transfers data from one quantum system (such as an ion) to another (such as a second ion), even if the two are completely isolated from each other, like two books in the basements of separate buildings. In this real-life form of teleportation, only quantum information, not matter, is transported, as opposed to the Star Trek version of “beaming” entire human beings from, say, a spaceship to a planet.

Teleportation of quantum data has been demonstrated previously with ions and a variety of other quantum systems. But the new work is the first to teleport a complete quantum logic operation using ions, a leading candidate for the architecture of future quantum computers. The experiments are described in the May 31 issue of Science.

Scientists drilling into a New Mexico rock formation deep underground have brought to life four unknown strains of bacteria that have lain entombed in salt crystals for 250 million years.

The bacteria, like many of their kind, form into long-lasting protective spores. The scientists were able to revive the spores until the microbes reproduced.

The report, by a team of biologists and geologists, has already fueled speculation that spores of living organisms might somehow be transported from planet to planet, across the galaxy and over eons. It is a concept known as “panspermia,” which some see as a possible source for life arising on Earth.

By Scott Mechura EBS Food Columnist

It isn’t a fruit or vegetable, it isn’t a fiber, and it certainly isn’t a protein. Then what is a mushroom?

Other than the mouthwatering anticipation with which chefs and foragers harvest morels or golden chanterelles from the Gallatin Valley each year, or prized truffles from France or Italy, most of us don’t often give the mushroom the same attention as local beef, trout, or fresh produce.

NASA is going to Titan.

The space agency announced today (June 27) that the next mission in its New Frontiers line of medium-cost missions will be Dragonfly, a rotorcraft designed to ply the skies of the huge, hazy and potentially life-hosting Saturn moon.

If all goes according to plan, Dragonfly will launch in 2026 and land on Titan eight years later, NASA officials said. The probe will then spend at least 2.5 years cruising around the 3,200-mile-wide (5,150 kilometers) moon, making two dozen flights that cover a total of about 110 miles (180 km).