Toggle light / dark theme

The image above shows convection currents causing a vertical plume to rise above the volcano.

There are about 300 volcanoes in the surrounding areas according to NASA, roughly 29 of them active. The reason why there are so many is because the peninsula lies on top of a tectonic ridge where the Pacific plate is being pushed underneath the North American plate.

If we want to colonize Mars, we’re going to need to figure out a way to feed ourselves there, and continuously sending food to the Red Planet isn’t a sustainable plan.

But now, a team of researchers thinks it’s figured out a way to produce enough food on Mars to feed a million people — and they say their plan to make Martian colonists self-sufficient would take just a hundred years to implement.

As a student astronomer scanning the skies with homemade instruments a quarter of a century ago, Didier Queloz spent months doubting the data that led him to an inescapable conclusion: he’d just discovered the first planet outside Earth’s solar system.

The Swiss scientist had spent much of his PhD research refining techniques to detect so-called exoplanets, which until one fateful night in October 1995 had previously only existed in the realm of science fiction.

Queloz and his colleague Michel Mayor, who on Tuesday were awarded the Nobel Prize for Physics for their pioneering work, had already overcome a number of obstacles in their galaxy-wide search.

Shown is Io and Europa over Jupiter’s Great Red Spot and then Titan as it passes over Saturn and it’s edge-on rings. NASA/JPL-Caltech/SSI/CICLOPS/Kevin M. Gill.

https://www.flickr.com/photos/kevinmgill/44583965185/?fbclid=IwAR1xKirf2-jLlhI7p4_h9ZlPYaB-nFd04VpIWg8B0ocB1_3bQquZjFTDy_s

It takes something truly extraordinary, like maybe the death of the Sun, to kill the near-indestructible invertebrate known as the tardigrade. Crash-landings on the Moon, a lack of oxygen and conditions in the darkest corners of the ocean don’t appear pose a threat to this critter’s livelihood. Scientists studying these so-called water bears have uncovered a neat trick they employ to endure inhospitable conditions, using a unique protein to generate protective clouds around their DNA.

Tardigrades measure no more than a millimeter long, but possess an indomitability that would make even nature’s largest and hardiest creatures jealous. Key to their survival is an ability to enter a suspended and extremely dehydrated state of being called anhydrobiosis, in which their metabolism is put on hold until the surrounding conditions are more favorable to a regular life.

This capability has seen tardigrades endure temperatures as high as 150º C (302º F) and as low as −272º C (−457.6º F). It has seen them studied in the vacuum of space and exist amongst intense pressures at the bottom of the ocean. When an Israeli spacecraft carrying tardigrades crash-landed on the Moon in August, it inspired some dramatic headlines around the possibility of the near-indestructible creatures colonizing Earth’s only natural satellite.

One of the fundamental challenges of physics is the reconciliation of Einstein’s theory of relativity and quantum mechanics. The necessity to critically question these two pillars of modern physics arises, for example, from extremely high-energy events in the cosmos, which so far can only ever be explained by one theory at a time, but not both theories in harmony. Researchers around the world are therefore searching for deviations from the laws of quantum mechanics and relativity that could open up insights into a new field of physics.

For a recent publication, scientists from Leibniz University Hannover and Ulm University have taken on the twin paradox known from Einstein’s special theory of relativity. This thought experiment revolves around a pair of twins: While one brother travels into space, the other remains on Earth. Consequently, for a certain period of time, the twins are moving in different orbits in space. The result when the pair meets again is quite astounding: The twin who has been travelling through space has aged much less than his brother who stayed at home. This phenomenon is explained by Einstein’s description of time dilation: Depending on the speed and where in the gravitational field two clocks move relative to each other, they tick at different speeds.

For the publication in Science Advances, the authors assumed a quantum-mechanical variant of the twin paradox with only one twin. Thanks to the superposition principle of , this twin can move along two paths at the same time. In the researchers’ , the twin is represented by an . “Such clocks use the quantum properties of atoms to measure time with high precision. The atomic clock itself is therefore a quantum-mechanical object and can move through space-time on two paths simultaneously due to the superposition principle. Together with colleagues from Hannover, we have investigated how this situation can be realised in an experiment,” explains Dr. Enno Giese, research assistant at the Institute of Quantum Physics in Ulm. To this end, the researchers have developed an experimental setup for this scenario on the basis of a quantum-physical model.