Toggle light / dark theme

Masten Space Systems announced today that it has selected to launch Masten Mission One (MM1). As part of MM1, Masten’s lunar lander will deliver nine NASA-sponsored science and technology demonstration experiments and several commercial payloads to the lunar south pole.

MOJAVE, Calif. – August 26, 2020 – Masten Space Systems announced today that it has selected to launch Masten Mission One (MM1). As part of MM1, Masten’s lunar lander will deliver nine NASA-sponsored science and technology demonstration experiments and several commercial payloads to the lunar south pole.

“Having’s proven launch success behind us is not only great for us, but it’s great for our customers,” said Masten chief executive officer, Sean Mahoney. “We share a common vision with and that makes this more than a partnership. It’s more like a dream team.”

SpaceX has secured a contract to act as the launch partner for Masten Space Systems, one of the companies awarded a NASA launch contract under that agency’s Commercial Lunar Payload Services (CLPS) program. Masten’s first lunar mission is set to take place in 2022 if all goes to plan, and will take the company’s XL-1 lunar lander to the south pole of the moon with NASA payloads on board, including scientific experimentation instruments, as well as cargo from commercial passengers.

NASA’s CLPS program is part of its broader efforts to expand partnerships with commercial space companies in order to ultimately lower its costs by sharing providers with other customers from private industry and commercial ventures. It’s also a key staging component for NASA’s Artemis program, which ultimately aims to put the first American woman and the next American man on the surface of the moon by 2024.

The science equipment on Masten’s lander will help the agency study the lunar south pole by gathering key data about the area. NASA’s Artemis III mission will aim to land in the same part of the moon’s surface, and CLPS landers will help it to be informed about the conditions and prepared with resources left in place by some of the uncrewed landers.

Nearby supernova explosions shape the interstellar medium. Ejecta, containing fresh nucleosynthetic products, may traverse the solar system as a transient passage, or alternatively the solar system may traverse local clouds that may represent isolated remnants of supernova explosions. Such scenarios may modulate the galactic cosmic-ray flux intensity to which Earth is exposed. Varying conditions of the traversed interstellar medium could have impacts on climate and can be imprinted in the terrestrial geological record. Some radionuclides, such as 60 Fe, are not produced on Earth or within the solar system in significant quantities. Their existence in deep-sea sediments demonstrates recent production in close-by supernova explosions with a continued influx of 60 Fe until today.

Nuclides synthesized in massive stars are ejected into space via stellar winds and supernova explosions. The solar system (SS) moves through the interstellar medium and collects these nucleosynthesis products. One such product is 60 Fe, a radionuclide with a half-life of 2.6 My that is predominantly produced in massive stars and ejected in supernova explosions. Extraterrestrial 60 Fe has been found on Earth, suggesting close-by supernova explosions ∼2 to 3 and ∼6 Ma. Here, we report on the detection of a continuous interstellar 60 Fe influx on Earth over the past ∼33,000 y. This time period coincides with passage of our SS through such interstellar clouds, which have a significantly larger particle density compared to the local average interstellar medium embedding our SS for the past few million years. The interstellar 60 Fe was extracted from five deep-sea sediment samples and accelerator mass spectrometry was used for single-atom counting.

Tesla CEO Elon Musk has updated the timeline on which he sees batteries enabling electric aircraft coming to maket. He now sees it happening in “3 to 4 years.” Several years ago, Musk, the CEO of both Tesla and SpaceX, said that he had a design for electric vertical take-off and landing (VTOL) a…


Featured image: @TomAbbotDavies1/Twitter

Tesla CEO Elon Musk has been talking about the electric plane for a long time. He even said he has an electric vertical take-off and landing (VTOL) aircraft project, though he never went into details about plans to launch it into production.

Musk said that in order for his design to work, it is necessary to increase the specific energy of the batteries. He calculated that lithium-ion batteries would need to reach an energy density of 400 Wh / kg for the batteries to outperform kerosene (Jet A) and for his electric plane to be viable.

Unlike a traditional rocket engine, which consists of individually designed parts that are combined together the AI designed rocket engine was 3D printed as one continuous piece. This includes both the combustion chamber where fuel and oxidiser is burned and the surface channels, through which the fuel is circulated to cool the chamber and keep it from overheating.

“In a rocket, the cooling channels are generally welded onto the combustion chamber, which through wear and tear can cause errors and explosions,” explained Hyperganic’s design director Duy-Anh Pham.


For the past number of years I’ve been taking about the rise of so called Creative Machines, Artificial Intelligence (AI) based “innovation” machines, that can design and innovate things for themselves without any human intervention – things such as aircraft parts, chairs, fashion lines, interplanetary rovers, self-evolving robots, and Under Armour trainers. And now those same creative machines have made yet another leap, and again it’s another first for the space industry, after German software company Hyperganic announced they’d developed a 3D printed rocket engine prototype, which was completely designed by AI.

Called “Spinnaker3,” this drag sail isn’t the first to be launched into space. But it is among the first to be large enough for deorbiting the upper stage of a launch vehicle. The Firefly Alpha launch will target an orbit altitude of about 200 miles, but the Spinnaker3 drag sail is capable of providing deorbit capability from orbit altitudes of 400 miles or greater.


WEST LAFAYETTE, Ind. — A rocket is going up into space with a drag sail. The goal? For the drag sail to bring the rocket back to Earth, preventing it from becoming like the thousands of pieces of space junk in Earth’s lower orbit.

The drag sail, developed by Purdue University engineers, will be on board a Firefly Aerospace rocket expected to launch in November from Vandenberg Air Force Base in California.

This sail and six other “Dedicated Research and Education Accelerator Mission” (DREAM) payloads are flying on Firefly Aerospace’s Alpha launch, the first flight for the launch vehicle company.

If you’re a fan of science fiction, chances are you encountered a few franchises where humanity has spread throughout the known Universe. The ships that allow them to do this, maybe they use a warp drive, maybe they “fold space,” maybe have a faster-than-light (FTL) or “jump” drive.

It’s a cool idea, the thought of “going interstellar!” Unfortunately, the immutable laws of physics tell us that this is simply not possible.

However, the physics that govern our Universe do allow for travel that is close to the speed of light, even though getting to that speed would require a tremendous amount of energy.