Toggle light / dark theme

Graphene consists of a planar structure, with carbon atoms connected in a hexagonal shape that resembles a beehive. When graphene is reduced to several nanometers (nm) in size, it becomes a graphene quantum dot that exhibits fluorescent and semiconductor properties. Graphene quantum dots can be used in various applications as a novel material, including display screens, solar cells, secondary batteries, bioimaging, lighting, photocatalysis, and sensors. Interest in graphene quantum dots is growing, because recent research has demonstrated that controlling the proportion of heteroatoms (such as nitrogen, sulfur, and phosphorous) within the carbon structures of certain materials enhances their optical, electrical, and catalytic properties.

The Korea Institute of Science and Technology (KIST, President Seok-Jin Yoon) reported that the research team led by Dr. Byung-Joon Moon and Dr. Sukang Bae of the Functional Composite Materials Research Center have developed a technique to precisely control the bonding structure of single heteroatoms in the graphene quantum dot, which is a zero-dimensional carbon nanomaterial, through simple chemical reaction control; and that they identified the relevant reaction mechanisms.

With the aim of controlling heteroatom incorporation within the graphene quantum dot, researchers have previously investigated using additives that introduce the heteroatom into the dot after the dot itself has already been synthesized. The dot then had to be purified further, so this method added several steps to the overall fabrication process. Another method that was studied involved the simultaneous use of multiple organic precursors (which are the main ingredients for dot synthesis), along with the additives that contain the heteroatom. However, these methods had significant disadvantages, including reduced crystallinity in the final product and lower overall reaction yield, since several additional purification steps had to be implemented. Furthermore, in order to obtain quantum dots with the chemical compositions desired by manufacturers, various reaction conditions, such as the proportion of additives, would have to be optimized.

This crystal of iron pyrite, just four hundredths of a millimeter in size, could function as the light absorbing layer of a tiny solar cell – potentially a promising future source of power on the Moon.

Working with Estonia’s Tallinn University of Technology (TalTech), ESA has studied the production of sandpaper-like rolls of such microcrystals as the basis of monograin-layer solar cells.

“We’re looking at these microcrystals in the context of future lunar settlement,” explains ESA advanced manufacturing engineer Advenit Makaya. “Future Moon bases will need to ‘live off the land’ in order to be sustainable, and the iron and sulfur needed to produce pyrite could be retrieved from the lunar surface.”

With Gauss Rifles [military squads] could pitch a solar panel, charge their guns’ batteries, and fire nuts and bolts off the ground as ammunition.


“You can hold far more energy in batteries than you can with gunpowder,” Wirth told Futurism. And a battery eliminates the need for “explosive chemical propellants.”

But it’s an entirely new type of armament that could have some potentially dangerous consequences, opening the doors to turn anything from metal rods to nuts and bolts into deadly projectiles. And its creators are already imagining military applications.

“Imagine a scenario where a military squad is pinned down behind enemy lines and they’re out of ammunition,” Wirth told us. “With Gauss Rifles they could pitch a solar panel, charge their guns’ batteries, and fire nuts and bolts off the ground as ammunition.”

NASA and the U.S. Dept. of Energy have come together to solicit design proposals for a nuclear reactor that will power Lunar and Martian exploration!


Over the next fifteen years, multiple space agencies and their commercial partners intend to mount crewed missions to the Moon and Mars. In addition to placing “footprints and flags” on these celestial bodies, there are plans to establish the infrastructure to allow for a long-term human presence. To meet these mission requirements and ensure astronaut safety, several technologies are currently being researched and developed.

At their core, these technologies are all about achieving self-sufficiency in terms of resources, materials, and energy. To ensure that these missions have all the energy they need to conduct operations, NASA is developing a Fission Surface Power (FSP) system that will provide a safe, efficient, and reliable electricity supply. In conjunction with solar cells, batteries, and fuel cells, this technology will allow for long-term missions to the Moon and Mars in the near future.

For NASA, having fission reactors for lunar surface operations is a vital part of the Artemis Program, which aims to create a program of “sustained lunar exploration.” This means infrastructure is required, like the Lunar Gateway (where spacecraft will dock and resupply) and the Artemis Base Camp on the surface, where astronauts will eat, exercise, and sleep when not conducting extravehicular activities (EVAs) – i.e., surface operations.

So can solar energy cut it?

Can we really move to a society not harnessed to the unsustainable practices of the old way.

I look at exactly how much land might be required & whether the lights will be able to stay on in the future as they have in the past.

I’m sure most know the answer, but this gives real facts and figures that can be used to defend against the fossil fuel apologists, and shared with friends, family and colleagues who are still learning.

Have an amazing day wherever you are…


Can the sun power the earth.

We need energy, and more than that we love energy.
And why not, it does work for us, and the more work is done for us, the less work we need to do to maintain a certain lifestyle. A level of luxury as it were and why should life not be nice! Surely the whole reason for existence is to experience and so therefore the more you can have conscious control of what fills your time the better.

What is it going to cost and will it do the job as well as the old way?
We all know the sun does not always shine and the wind does not always blow.

So can solar cut it?

And if you enjoyed that why not watch another video that talks about the future energy dividends ahead, follow this link.

And why not leave your thoughts below.

Primary sources for data within this video can be found in the Rethinking Humanity book released by RethinkX.
https://www.rethinkx.com/

The idea of transparent solar windows almost sounds too good to be true, and it is, but not entirely. Researchers have been hammering away at the challenge of harnessing sunlight to generate electricity from see-through windows for years. The prize is acres upon acres of new sites for solar panels on buildings, without losing the energy-saving advantages of daylighting. Just look at any glass building and you can practically feel the blooming of the possibilities. The obstacles are many but it looks like a real breakthrough is finally at hand, so to speak.

Transparent Solar Windows, For Real

See-through solar cells have been bouncing around the CleanTechnica radar since at least 2010, when the possibility of creating a transparent solar window was beginning to emerge alongside thin film solar technology.

Solid-solution organic crystals have been brought into the quest for superior photon upconversion materials, which transform presently wasted long-wavelength light into more useful shorter wavelength light. Scientists from Tokyo Institute of Technology have revisited a materials approach previously deemed lackluster—using a molecule originally developed for organic LEDs—and have achieved outstanding performance and efficiency. Their findings pave the way for many novel photonic technologies, such as better solar cells and photocatalysts for hydrogen and hydrocarbon productions.

Light is a powerful source of energy that can, if leveraged correctly, be used to drive stubborn chemical reactions, generate electricity, and run optoelectronic devices. However, in most applications, not all the wavelengths of can be used. This is because the energy that each photon carries is inversely proportional to its wavelength, and chemical and are triggered by light only when the energy provided by individual photons exceeds a certain threshold.

This means that devices like solar cells cannot benefit from all the color contained in sunlight, as it comprises a mixture of photons with both high and low energies. Scientists worldwide are actively exploring materials to realize upconversion (PUC), by which photons with lower energies (longer wavelengths) are captured and re-emitted as photons with higher energies (shorter wavelengths). One promising way to realize this is through triplet-triplet annihilation (TTA). This process requires the combination of a sensitizer material and an annihilator material. The sensitizer absorbs low energy photons (long-wavelength light) and transfers its excited energy to the annihilator, which emits higher photons (light of shorter wavelength) as a result of TTA.

Sushil Reddy is no stranger to long-distance electric bicycles rides, having broken the Guinness World Record back in 2016 with a 7,424 km (4,613 mile) ride across India. Since then he’s set his sights on solar power, performing several more long-distance solar-powered electric bike rides. Now he’s halfway through a 10,460 km (6,500 mile) ride around the US on a custom-built solar-powered electric bike as part of the SunPedal Ride project.

As the SunPedal Ride project explained:

“The SunPedal Ride is an outreach project started by Sushil Reddy in 2016. The idea is to have conversations about clean energy and sustainable mobility via endurance journeys undertaken on zero tail-pipe emission vehicles. Each edition of The SunPedal Ride is a new challenge which is executed by a team and supported by a group of sponsors/partners to spread the message via public interactions. A medium of a zero tail-pipe emissions vehicle is used in each edition of The SunPedal Ride.”

The auto industry is starting to get serious about solar.

Chinese automaker EdisonFuture, a subsidiary of renewable energy firm SPI Energy, revealed the EF1-T, its first electric pickup with a retractable solar panel roof last month.

On its website, EdisonFuture describes the EF1-V as a “modern multi-purpose van for work, travel, family or personal use in varying road and environment conditions from city streets to off-road.” The delivery van will be available in different cargo iterations, depending on the space required, ranging from 260 to 400 cubic feet (7.3−11.3 cubic meters) of cargo space.