Toggle light / dark theme

Sometimes sensitive data, like passwords or keys that unlock encrypted communications, are accidentally left open for anybody to see. It’s happened everywhere from the Republican National Committee to Verizon, and as long as information can be public on the internet the trend isn’t going to stop.

But researchers at software infrastructure firm Pivotal have taught AI to locate this accidentally public sensitive information in a surprising way: By looking at the code as if it were a picture. Since modern artificial intelligence is arguably better than humans at identifying minute differences in images, telling the difference between a password and normal code for a computer is just like recognizing a dog from a cat.

The best way to check whether private passwords or sensitive information has been left public today is to use hand-coded rules called “regular expressions.” These rules tell a computer to find any string of characters that meets specific criteria, like length and included characters. But passwords are all different, and this method means that the security engineer has to anticipate every kind of private data they want to guard against.

Read more

MIT spin off company Ayar Labs is combining light and electronics to create faster, more efficient computers. The new optoelectronic chips are designed to speed up data transmission to and from conventional processor chips in a way that will also reduce energy consumption in chip-to-chip communications by 95 percent and could cut overall energy usages by large data firms by up to 50 percent.

Since the invention of the silicon chip 60 years ago, the power of computers has doubled every two years, but the speed at which computer systems work hasn’t shown quite such dramatic progress. The problem is one of data transmission and the bottlenecks that any technology runs into, slowing down the whole to the speed of its most sluggish part.

Think of a computer as like an air passenger system. If you concentrate on the aircraft, airport runway architecture, supply logistics, and air traffic control, it’s easy to speed up travel between, for example, New York and Washington DC to under one hour. That sounds fantastic, but if it takes you two hours to get through security at one hand and another two hours to collect your baggage at the other, then it’s faster to drive.

Read more

A security company wants to modernize the “backward-looking” and “inherently inefficient” video surveillance industry by offering a blockchain-based system which allows users to react to threats in real time.

Faceter’s decentralized surveillance technology – which it claims is a world first for consumers – “gives brains to cameras” by enabling them to instantly detect faces, objects and analyze video feeds. Although some B2B providers do offer similar features, the company claims they are currently too expensive for smaller firms and the public at large because of the “substantial computing resources” such technology needs.

According to Faceter’s white paper, Blockchain has the potential to make this solution affordable for everyone – as computing power for recognition calculations would be generated by a network of miners.

Read more

Rumors of commercial quantum computing systems have been coming hot and heavy these past few years but there are still a number of issues to work out in the technology. For example, researchers at the Moscow Institute Of Physics And Technology have begun using silicon carbine to create a system to release single photons in ambient i.e. room temperature conditions. To maintain security quantum computers need to output quantum bits – essentially single photons. This currently requires a supercooled material that proves to be unworkable in the real world. From the release:

Photons — the quanta of light — are the best carriers for quantum bits. It is important to emphasize that only single photons can be used, otherwise an eavesdropper might intercept one of the transmitted photons and thus get a copy of the message. The principle of single-photon generation is quite simple: An excited quantum system can relax into the ground state by emitting exactly one photon. From an engineering standpoint, one needs a real-world physical system that reliably generates single photons under ambient conditions. However, such a system is not easy to find. For example, quantum dots could be a good option, but they only work well when cooled below −200 degrees Celsius, while the newly emerged two-dimensional materials, such as graphene, are simply unable to generate single-photons at a high repetition rate under electrical excitation.

Researchers used silicon carbide in early LEDs and has been used to create electroluminescent electronics in the past. This new system will allow manufacturers to place silicon carbide emitters right on the quantum computer chips, a massive improvement over the complex systems used today.

Read more

This event will be webcast live from this page.

The Technology Policy Program invites you to the launch of our upcoming report, A National Machine Intelligence Strategy for the United States.

The United States is at the precipice of a defining moment in history. Over the past five years, progress in machine intelligence (MI) has greatly accelerated. From the defeat of Go champion Lee Sedol by DeepMind’s AlphaGo program to the first deployments of fully-autonomous vehicles on public roads, recent events are challenging us to re-evaluate what may soon be possible for computerized systems. MI systems have already begun to quietly pervade a growing share of businesses, governments, and individual lives around the world, and we are only just beginning to grasp the impacts that this technological revolution will have on our economy, our society, and our national security. In our paper, we outline they key elements of a comprehensive national strategy for the United States to promote the safe and responsible development of MI, and to maintain U.S. leadership in MI technology.

Read more

It has proposed spending a total of US$12.7 million on technical upgrades to the vault to better protect the more than 930,000 seed varieties inside. It has completed a feasibility study and plans to move ahead with the construction of a new concrete access tunnel and a new service building for the emergency power, refrigeration units and electrical equipment.


Global food security is serious business, and when you have water seeping into a doomsday facility built to shore up food supplies for the future, well, that’s hardly ideal. But such breaches should be a thing of the past, with Norwegian authorities overseeing the Svalbard Global Seed Vault planning a multi-million dollar overhaul of the structure.

Read more