A major threat to America has been largely ignored by those who could prevent it. An electromagnetic pulse (EMP) attack could wreak havoc on the nation’s electronic systems-shutting down power grids, sources, and supply mechanisms. An EMP attack on the United States could irreparably cripple the country. It could simultaneously inflict large-scale damage and critically limit our recovery abilities. Congress and the new Administration must recognize the significance of the EMP threat and take the necessary steps to protect against it.
Systems Gone Haywire
An EMP is a high-intensity burst of electromagnetic energy caused by the rapid acceleration of charged particles. In an attack, these particles interact and send electrical systems into chaos in three ways: First, the electromagnetic shock disrupts electronics, such as sensors, communications systems, protective systems, computers, and other similar devices. The second component has a slightly smaller range and is similar in effect to lightning. Although protective measures have long been established for lightning strikes, the potential for damage to critical infrastructure from this component exists because it rapidly follows and compounds the first component. The final component is slower than the previous two, but has a longer duration. It is a pulse that flows through electricity transmission lines-damaging distribution centers and fusing power lines. The combination of the three components can easily cause irreversible damage to many electronic systems.
Last year, Microsoft Corp.’s Azure security team detected suspicious activity in the cloud computing usage of a large retailer: One of the company’s administrators, who usually logs on from New York, was trying to gain entry from Romania. And no, the admin wasn’t on vacation. A hacker had broken in.
Microsoft quickly alerted its customer, and the attack was foiled before the intruder got too far.
Chalk one up to a new generation of artificially intelligent software that adapts to hackers’ constantly evolving tactics. Microsoft, Alphabet Inc.’s Google, Amazon.com Inc. and various startups are moving away from solely using older “rules-based” technology designed to respond to specific kinds of intrusion and deploying machine-learning algorithms that crunch massive amounts of data on logins, behavior and previous attacks to ferret out and stop hackers.
This is the first time that an entry from the Philippines has made it to the global finalists. http://verafiles.org/articles/filipino-it-experts-hope-nasa-announces-space-challenge-winn #SpaceApps #SpaceAppsPH
The announcement of the winners in the global competition was supposed to have been made in mid-January but has suffered a delay due to the federal government shutdown caused by a standoff over border security.
The shutdown, which began last Dec. 21, ended on Friday after U.S. President Donald Trump signed into law a funding measure that will allow the reopening of government operations until Feb. 15.
Mention artificial intelligence (AI) or artificial neural networks, and images of computers may come to mind. AI-based pattern recognition has a wide variety of real-world uses, such as medical diagnostics, navigation systems, voice-based authentication, image classification, handwriting recognition, speech programs, and text-based processing. However, artificial intelligence is not limited to digital technology and is merging with the realm of biology—synthetic biology and genomics, to be more precise. Pioneering researchers led by Dr. Lulu Qian at the California Institute of Technology (Caltech) have created synthetic biochemical circuits that are able to perform information processing at the molecular level–an artificial neural network consisting of DNA instead of computer hardware and software.
Artificial intelligence is in the early stages of a renaissance period—a rebirth that is largely due to advances in deep learning techniques with artificial neural networks that have contributed to improvements in pattern recognition. Specifically, the resurgence is largely due to a mathematical tool that calculates derivatives called backpropagation (backward propagation)—it enables artificial neural networks to adjust hidden layers of neurons when there are outlier outcomes for more precise results.
Artificial neural networks (ANN) are a type of machine learning method with concepts borrowed from neuroscience. The structure and function of the nervous system and brain were inspiration for artificial neural networks. Instead of biological neurons, ANNs have artificial nodes. Instead of synapses, ANNs have connections that are able to transmit signals between nodes. Like neurons, the nodes of ANNs are able to receive and process data, as well as activate other nodes connected to it.
CERN has revealed plans for a gigantic successor of the giant atom smasher LHC, the biggest machine ever built. Particle physicists will never stop to ask for ever larger big bang machines. But where are the limits for the ordinary society concerning costs and existential risks?
CERN boffins are already conducting a mega experiment at the LHC, a 27km circular particle collider, at the cost of several billion Euros to study conditions of matter as it existed fractions of a second after the big bang and to find the smallest particle possible – but the question is how could they ever know? Now, they pretend to be a little bit upset because they could not find any particles beyond the standard model, which means something they would not expect. To achieve that, particle physicists would like to build an even larger “Future Circular Collider” (FCC) near Geneva, where CERN enjoys extraterritorial status, with a ring of 100km – for about 24 billion Euros.
Experts point out that this research could be as limitless as the universe itself. The UK’s former Chief Scientific Advisor, Prof Sir David King told BBC: “We have to draw a line somewhere otherwise we end up with a collider that is so large that it goes around the equator. And if it doesn’t end there perhaps there will be a request for one that goes to the Moon and back.”
“There is always going to be more deep physics to be conducted with larger and larger colliders. My question is to what extent will the knowledge that we already have be extended to benefit humanity?”
There have been broad discussions about whether high energy nuclear experiments could pose an existential risk sooner or later, for example by producing micro black holes (mBH) or strange matter (strangelets) that could convert ordinary matter into strange matter and that eventually could start an infinite chain reaction from the moment it was stable – theoretically at a mass of around 1000 protons.
CERN has argued that micro black holes eventually could be produced, but they would not be stable and evaporate immediately due to „Hawking radiation“, a theoretical process that has never been observed.
Furthermore, CERN argues that similar high energy particle collisions occur naturally in the universe and in the Earth’s atmosphere, so they could not be dangerous. However, such natural high energy collisions are seldom and they have only been measured rather indirectly. Basically, nature does not set up LHC experiments: For example, the density of such artificial particle collisions never occurs in Earth’s atmosphere. Even if the cosmic ray argument was legitimate: CERN produces as many high energy collisions in an artificial narrow space as occur naturally in more than hundred thousand years in the atmosphere. Physicists look quite puzzled when they recalculate it.
Others argue that a particle collider ring would have to be bigger than the Earth to be dangerous.
Since these discussions can become very sophisticated, there is also a more general approach (see video): According to present research, there are around 10 billion Earth-like planets alone in our galaxy, the Milky Way. Intelligent life might send radio waves, because they are extremely long lasting, though we have not received any (“Fermi paradox”). Theory postulates that there could be a ”great filter“, something that wipes out intelligent civilizations at a rather early state of their technical development. Let that sink in.
All technical civilizations would start to build particle smashers to find out how the universe works, to get as close as possible to the big bang and to hunt for the smallest particle at bigger and bigger machines. But maybe there is a very unexpected effect lurking at a certain threshold that nobody would ever think of and that theory does not provide. Indeed, this could be a logical candidate for the “great filter”, an explanation for the Fermi paradox. If it was, a disastrous big bang machine eventually is not that big at all. Because if civilizations were to construct a collider of epic dimensions, a lack of resources would have stopped them in most cases.
Finally, the CERN member states will have to decide on the budget and the future course.
The political question behind is: How far are the ordinary citizens paying for that willing to go?
LHC-Critique / LHC-Kritik
Network to discuss the risks at experimental subnuclear particle accelerators
Humanity is under threat. At least according to Sir Martin Rees, one of Britain’s most esteemed astronomers.
These two kinds of technologies enable just a few people to have a hugely wide-ranging and maybe even global cascading effect. This leads to big problems of governance because you’d like to regulate the use of these things, but enforcing regulations worldwide is very, very difficult. Think how hopeless it is to enforce the drug laws globally or the tax laws globally. To actually ensure that no one misuses these new technologies is just as difficult. I worry that we are going to have to minimize this risk by actions which lead to a great tension between privacy, liberty and security.
Do you see ways that we can use and develop these technologies in a responsible way?
We’ve got to try. We can’t put the genie back in the bottle. We’ve just got to make sure that we can derive benefits and minimize risks. When I say we have a bumpy ride, I think it is hard to imagine that there won’t be occasions when there are quite serious disruptions caused by either error or by design using these new powerful technologies.
Rapid comprehension of world events is critical to informing national security efforts. These noteworthy changes in the natural world or human society can create significant impact on their own, or may form part of a causal chain that produces broader impact. Many events are not simple occurrences but complex phenomena composed of a web of numerous subsidiary elements – from actors to timelines. The growing volume of unstructured, multimedia information available, however, hampers uncovering and understanding these events and their underlying elements.
“The process of uncovering relevant connections across mountains of information and the static elements that they underlie requires temporal information and event patterns, which can be difficult to capture at scale with currently available tools and systems,” said Dr. Boyan Onyshkevych, a program manager in DARPA’s Information Innovation Office (I2O).
The use of schemas to help draw correlations across information isn’t a new concept. First defined by cognitive scientist Jean Piaget in 1923, schemas are units of knowledge that humans reference to make sense of events by organizing them into commonly occurring narrative structures. For example, a trip to the grocery store typically involves a purchase transaction schema, which is defined by a set of actions (payment), roles (buyer, seller), and temporal constraints (items are scanned and then payment is exchanged).
FRIB) will be a scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science (DOE-SC). FRIB is funded by the DOE-SC, MSU and the State of Michigan. Supporting the mission of the Office of Nuclear Physics in DOE-SC, FRIB will enable scientists to make discoveries about the properties of rare isotopes (that is, short-lived nuclei not normally found on Earth), nuclear astrophysics, fundamental interactions, and applications for society, including in medicine, homeland security, and industry.
This video — The Facility for Rare Isotope Beams at MSU — explains the history of FRIB, its role in research and education, and its future in rare-isotope discoveries. It includes an animated sequence to help viewers understand what FRIB is about.
Employment opportunities: FRIB is looking for engineers, physicists, and other talented professionals to build the world’s leading rare isotope facility.