Backers of the EARN IT Act focus on protecting children from being exploited, but security experts say the bill actually chips away at your encrypted messages.
Category: security
Today, we mayors are uniting to send a clear message: our residents deserve economic security through a guaranteed income. We are calling on legislators to wake up to Dr. King’s dream for a federal guaranteed income that will put cash back into the hands of everyday Americans. Faced again with the question of chaos or community, we’re choosing the latter – it’s time to invest directly in our communities and our people.
We welcome all U.S. mayors to join our coalition to strengthen all our communities by supplementing the existing social safety net and driving forward this powerful tool for racial and gender equity.
Contact us at [email protected].
Survey finds majority of companies with AI projects reporting positive results. IT leaders see potential for security analytics and predictive intelligence to improve their delivery of tech services.
Eleven mayors have signed on to the “Mayors for Guaranteed Income” initiative. The group is working with the Economic Security Project, which has funded basic income experiments in Stockton and elsewhere, and is co-chaired by Chris Hughes, a multimillionaire guaranteed income advocate and one of the founders of Facebook.
The cities that have joined the initiative also include St Paul, Minnesota; Jackson, Mississippi; Newark, New Jersey; Oakland and Compton, California; Shreveport, Louisiana; Columbia, South Carolina; and Tacoma, Washington.
It’s not yet clear how much money the cities might hand out, or how many residents might actually receive a check in the near future. The mayors are still working on fundraising for the effort and exploring what experiments in their cities might look like, including how to generate more data that shows the effects of the direct cash payments. But Tubbs said that he hoped cities would be able to take some action on guaranteed income by early next year.
Advance poised to enable cost-effective space-based global quantum network for secure communications and more.
In a critical step toward creating a global quantum communications network, researchers have generated and detected quantum entanglement onboard a CubeSat nanosatellite weighing less than 2.6 kilograms and orbiting the Earth.
“In the future, our system could be part of a global quantum network transmitting quantum signals to receivers on Earth or on other spacecraft,” said lead author Aitor Villar from the Centre for Quantum Technologies at the National University of Singapore. “These signals could be used to implement any type of quantum communications application, from quantum key distribution for extremely secure data transmission to quantum teleportation, where information is transferred by replicating the state of a quantum system from a distance.”
The founders of Athena Security told KVUE the thermal imaging camera can scan 1,000 people per hour, letting them know instantly if you have a fever.
The dimension of the smartphone is 162.5 x 75.5 x 8.1 mm and it weighs 185 grams. The smartphone has a Super AMOLED capacitive touchscreen providing 1080 x 2400 pixels resolution with 393 PPI density. The screen is also protected with Corning Gorilla Glass 3.
The rear camera of the smartphone consists of a 64 MP (wide) + 12 MP (ultrawide) + 5 MP (macro) + 5 MP (depth) while on the front there is a 32 MP (wide) camera for shooting selfies. The smartphone is available in various color options such as Prism Cube Black, Prism Cube Sliver, and Prism Cube Blue.
The Samsung Galaxy A Quantum is powered by the Exynos 980 (8 nm), QRNG security chipset Octa-core processor. The smartphone is fueled with a non-removable Li-Po 4500 mAh battery + Fast battery charging 25W.
Qualcomm today announced its RB5 reference design platform for the robotics and intelligent drone ecosystem. As the field of robotics continues to evolve towards more advanced capabilities, Qualcomm’s latest platform should help drive the next step in robotics evolution with intelligence and connectivity. The company has combined its 5G connectivity and AI-focused processing along with a flexible peripherals architecture based on what they are calling “mezzanine” modules. The new Qualcomm RB5 platform promises an acceleration in the robotics design and development process with a full suite of hardware, software and development tools. The company is making big promises for the RB5 platform, and if current levels of ecosystem engagement are any indicator, the platform will have ample opportunities to prove itself.
Targeting robot and drone designs meant for enterprise, industrial and professional service applications, at the heart of the platform is Qualcomm’s QRB5165 system on chip (SOC) processor. The QRB5165 is derived from the Snapdragon 865 processor used in mobile devices, but customized for robotic applications with increased camera and image signal processor (ISP) capabilities for additional camera sensors, higher industrial grade temperature and security ratings and a non-Package-on-Package (POP) configuration option.
To help bring highly capable artificial intelligence and machine learning capabilities to bear in these applications, the chip is rated for 15 Tera Operations Per Second (TOPS) of AI performance. Additionally, as it is critical that robots and drones can “see” their surroundings, the architecture also includes support for up to seven concurrent cameras and a dedicated computer vision engine meant to provide enhanced video analytics. Given the sheer amount of information that the platform can generate, process and analyze, the platform also has support for a communications module boasting 4G and 5G connectivity speeds. In particular, the addition of 5G to the platform will allow high speed and low latency data connectivity to the robots or drones.
Quantum key distribution (QKD)1,2,3 is a theoretically secure way of sharing secret keys between remote users. It has been demonstrated in a laboratory over a coiled optical fibre up to 404 kilometres long4,5,6,7. In the field, point-to-point QKD has been achieved from a satellite to a ground station up to 1,200 kilometres away8,9,10. However, real-world QKD-based cryptography targets physically separated users on the Earth, for which the maximum distance has been about 100 kilometres11,12. The use of trusted relays can extend these distances from across a typical metropolitan area13,14,15,16 to intercity17 and even intercontinental distances18. However, relays pose security risks, which can be avoided by using entanglement-based QKD, which has inherent source-independent security19,20. Long-distance entanglement distribution can be realized using quantum repeaters21, but the related technology is still immature for practical implementations22. The obvious alternative for extending the range of quantum communication without compromising its security is satellite-based QKD, but so far satellite-based entanglement distribution has not been efficient23 enough to support QKD. Here we demonstrate entanglement-based QKD between two ground stations separated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the need for trusted relays. Entangled photon pairs were distributed via two bidirectional downlinks from the Micius satellite to two ground observatories in Delingha and Nanshan in China. The development of a high-efficiency telescope and follow-up optics crucially improved the link efficiency. The generated keys are secure for realistic devices, because our ground receivers were carefully designed to guarantee fair sampling and immunity to all known side channels24,25. Our method not only increases the secure distance on the ground tenfold but also increases the practical security of QKD to an unprecedented level.
A pair of new security threats to Intel-based computer systems have been revealed. The beleaguered semiconductor chip manufacturer has faced a seemingly endless series of vulnerabilities over the past two years.
Although no known attacks have occurred, two teams of researchers have confirmed vulnerabilities in what is supposed to be the safest neighborhood within Intel processor architecture.
One attack, dubbed SGAxe, can gain entry into Intel’s Software Guard eXtensions (SGX) services that were specifically designed to protect critical data in the event of massive assault elsewhere in a system. A hacker theoretically can steal cryptographic keys stored in SGX and use them to break security measures protecting sensitive data such as financial records, copyrighted content or passwords.