Toggle light / dark theme

Another Quantum Breakthrough through ultra- low temp nanoelectronics- Sub-millikelvin nanoelectronic circuits and is another step on the way to develop new quantum technologies including quantum computers and sensors.


The first ever measurement of the temperature of electrons in a nanoelectronic device a few thousandths of a degree above absolute zero was demonstrated in a joint research project performed by Lancaster University, VTT Technical Research Centre of Finland Ltd, and Aivon Ltd.

The team managed to make the electrons in a circuit on a silicon chip colder than had previously been achieved.

Dr Rich Haley, Head of Ultra Low Temperature Physics at Lancaster, said: “This is a notable achievement in that the team has finally broken through the 4 millikelvin barrier, which has been the record in such structures for over 15 years.”

Read more

And, another breakthrough for Quantum by Russian Scientists. Russian scientists have developed a new way to solve a key problem with cooling plasmonic components, which makes optical chips and super-fast light-based computers a definite possibility. https://lnkd.in/b9kuiSa


Russian scientists discover how to cool plasmonic components to make light-based transistors possible.

Read more

Luv the whole beautiful picture of a Big Data Quantum Computing Cloud. And, we’re definitely going to need it for all of our data demands and performance demands when you layer in the future of AI (including robotics), wearables, our ongoing convergence to singularity with nanobots and other BMI technologies. Why we could easily exceed $4.6 bil by 2021.


From gene mapping to space exploration, humanity continues to generate ever-larger sets of data—far more information than people can actually process, manage, or understand.

Machine learning systems can help researchers deal with this ever-growing flood of information. Some of the most powerful of these analytical tools are based on a strange branch of geometry called topology, which deals with properties that stay the same even when something is bent and stretched every which way.

Such topological systems are especially useful for analyzing the connections in complex networks, such as the internal wiring of the brain, the U.S. power grid, or the global interconnections of the Internet. But even with the most powerful modern supercomputers, such problems remain daunting and impractical to solve. Now, a new approach that would use quantum computers to streamline these problems has been developed by researchers at MIT, the University of Waterloo, and the University of Southern California…

Read more

Researchers at the University of Colorado have created a unique, light-activated nanotherapy to destroy antibiotic resistant bacteria

The pursuit of longevity requires continued, effective antibiotics. Otherwise, you could be as fit as a fiddle at 100 and still be downed by a nasty, resistant strain.

While bacterial strains resistant to current drugs are rapidly rising across the globe, infecting 2 million people last year, researchers are turning to increasingly innovative ways to destroy these populations. Nanotechnology is one such, increasingly promising technology.

Read more

Dreaming of wormholes: Kaku said “The only feasible way to break the light barriers is through general relativity and warping of space-time”. We call this warping as wormholes, theoretically, these allow something to break the cosmic speed limit by travelling huge distance in a short time. These wormholes have some exotic matter, holding them open. This exotic matter has been made in laboratories but in a small quantity. In 1988, Kip Thorne proposed a theory of Stable Wormholes to find out the possibility of a wormhole in the presence of that exotic matter (like the one in Interstellar Movie). Thorne says “After 30 years, the answer is still unknown and we are still away from the final answer.”

Read more

This all sounds extremely familiar to me for some reason. And, really ties in well with my recent articles on “AI holding your data hostage” and “Quantum Computing — things that need to be considered” — glad more folks are speaking up.


Speaking at the World Economic Forum in the Swiss Alps, Nita Farahany, a professor of law and philosophy, said the device reading brain activity could be accessed by ‘not good Samaritans’.

Read more

Every month, we’re seeing more and more researchers and companies break the Quantum barrier by making their own Quantum Chip. Yale is the latest ones to introduce their own Quantum Chip. Next stop; a programmable Quantum Processor


In what can only be termed as a big step in the manufacture of practical quantum circuits, engineers from the Yale School of Engineering and Applied Science have created a silicon chip embedded with all the required components for a quantum processor.

Quantum computers are often portrayed as the next step in computer technology, and with good reason. Theoretically, a quantum computer would be thousands of times faster than today’s fastest supercomputers. They could also help in the creation of a practically capable AI. Quantum computers would drastically improve humanity’s data processing capabilities, and that is why researchers have been working for years towards their realization.

Read more

An international team of scientists has managed to create a quantum knot for the first time — a fundamental breakthrough in quantum physics that could one day help power the supercomputers of the future.

These knots aren’t quite the same as the ones you might tie to moor a boat to a jetty — they’ve been made in a superfluid form of quantum matter called Bose-Einstein Condensate, or BEC, and are more like smoke rings than traditional knots.

“For decades, physicists have been theoretically predicting that it should be possible to have knots in quantum fields, but nobody else has been able to make one,” said lead researcher, Mikko Möttönen.

Read more