Toggle light / dark theme

BLASTOFF! China has launched their new Quantum Satellite today Tuesday. It is the beginning of a whole new tech & communications world.


BEIJING—China on Tuesday launched the world’s first quantum satellite, which will help it establish “hack-proof” communications between space and the ground, state media said, the latest advance in an ambitious space program.

The program is a priority as President Xi Jinping has urged China to establish itself as a space power, and apart from its civilian ambitions, it has tested anti-satellite missiles.

The Quantum Experiments at Space Scale, or QUESS, satellite, was launched from the Jiuquan Satellite Launch Center in the remote northwestern province of Gansu in the early hours of Tuesday, the official Xinhua news agency said.

Read more

This is so exciting.


The transfer of data using quantum communications is considered impenetrable due to a particle phenomenon known as quantum entanglement, with eavesdroppers unable to monitor the transfer without altering the quantum state and thereby being detected. In theory, two parties can communicate in secret by sharing an encryption key encoded in a string of photons.

China’s big-spending quantum research initiative, part of Beijing’s broader multi-billion dollar strategy to overtake the West in science and space research, is being closely watched in global scientific research and security circles, with groups from Canada, Japan, Singapore and Europe also planning their own quantum space experiments.

Read more

Although this another article that highlights again China’s planned launch; I wanted to share it because it does (in a pragmatic approach) highlight a couple of the key benefits for having QC.


The imminent launch of the world’s first quantum communication satellite is widely believed to herald a breakthrough in China’s development of quantum technology.

Mysterious and confusing, the study of minute particles smaller than atoms has been applied in fields as diverse as computer processing, lasers and nuclear technology.

How will quantum communication change our lives — especially in the age of cyber attacks, wiretapping and information leakage?

Read more

Just days away from launch; what will a Chinese owned Quantum Satellite and network mean for the world particularly for the US, Canada, and Europe?


Beijing: China is set to launch the world’s first quantum communication satellite which boasts of hack-proof ultra high security features to prevent wiretapping and intercepts.

If the satellite works well, it will pave the way to a hack-proof communication system, state-run Xinhua news agency reported on Sunday.

It will launch the satellite in a matter of days.

Read more

Hmmm.


Testimonials from prominent physics researchers from institutions such as Cambridge University, Princeton University, and the Max Planck Institute for Physics in Munich claim that quantum mechanics predicts some version of “life after death.”

They assert that a person may possess a body-soul duality that is an extension of the wave-particle duality of subatomic particles.

Wave-particle duality, a fundamental concept of quantum mechanics, proposes that elementary particles, such as photons and electrons, possess the properties of both particles and waves. These physicists claim that they can possibly extend this theory to the soul-body dichotomy. If there is a quantum code for all things, living and dead, then there is an existence after death (speaking in purely physical terms). Dr. Hans-Peter Dürr, former head of the Max Planck Institute for Physics in Munich, posits that, just as a particle “writes” all of its information on its wave function, the brain is the tangible “floppy disk” on which we save our data, and this data is then “uploaded” into the spiritual quantum field. Continuing with this analogy, when we die the body, or the physical disk, is gone, but our consciousness, or the data on the computer, lives on.

Read more

If you think quantum computing sounds like something out of science fiction, you’re not alone. It’s still more theory than practice, but it might be able to answer questions that are unsolvable by current computers. Earlier this year, IBM made a small quantum computer available via the cloud.

Quantum Mechanics and the Weirdness of Particles

To understand quantum computers, you must first know a little bit about quantum mechanics. In the briefest possible description, quantum mechanics is the branch of physics that models how particles behave at the smallest scales.

Read more

China has made a breakthrough in the research of quantum computing. The quantum laboratory of the University of Science and Technology of China recently announced its success in developing a semiconductor quantum chip.

According to a CNTV report on Aug. 11, the quantum chip is equivalent to the “brain” of future quantum computers; it enables quantum operations and information processing. Besides computing, technologies for quantum storage and control are also essential to the future of this technology. The “sandwich-type” solid-state quantum memory can be operational at a low temperature with magnetic auxiliary equipment.

Zhou Zongquan, a researcher at the Key Laboratory of Quantum Information under the Chinese Academy of Sciences (CAS), said that the direction of future development is to prolong the life of quantum memory.

Read more

ACQUIRE researchers will confront major challenges in a four-year quest to engineer a quantum communication system on a chip. The chip will need to operate at room temperature with low energy in a fiber optic network with entangled photons.

Currently, such a communication system may be demonstrated in laboratories, but only at cryogenic (very low) temperatures, and with bulky, energy-intensive equipment. However, a fundamental understanding of quantum physics and optical materials, as well as recent progress in nanoscale photonic integration, have brought communication systems scaled to the quantum level within reach.

If successful, the ACQUIRE teams’ results will begin to realize the hardware needed for secure and efficient quantum communication. The findings from the ACQUIRE projects will also advance quantum sensing and computing.

Read more