Toggle light / dark theme

Dean Radin, Ph.D. and Chief Scientist of IONS, the Institute for Noetic Sciences, recently introduced the results of a series of experiments that may provide the missing link between consciousness and matter, turning the tables on materialism and asserting consciousness as a fundamental component of reality itself. Using a variation of the famous double-slit experiment, he and his team hypothesized that the conscious intent of a human mind might be able to collapse a quantum wave function without direct interaction. Simply by concentrating they postulated, meditation might be able to affect and influence quantum particles – the smallest components of matter that form our physical universe. .

Initial experiments used participants 2 meters away from the device. Alternating between asking participants to concentrate on the apparatus, then removing their attention showed astounding results. Fearing that temperature differences or other variables might have influenced the test, they offered the experiment to participants online. Using several thousand robotic control sessions to ensure that a determination could be made for the factor of human consciousness, the results were likewise astounding, with initial trial results of greater than 5 sigma.

Dr. Radin’s video from the April 2016 conference introducing the results from this experiment is available online through the IONS channel. I highly recommend watching the video in its entirety to get a full understanding of the experiment results, research protocols, variables, controls and the results from other labs and researchers who have replicated these results.

Read more

China 2 yr Quantum Communication program’s goal is to reliably transmit ‘unhackable’ keys from space to the ground through quantum entanglement.


China has been the first country to utilize quantum technologies within their satellites in order to mitigate the threats from cyber attacks in their country.

Read more

Excellent progress.


The rapid progress that has been sweeping the field of crystal growth and related device technology is opening doors. Perhaps nowhere is the effect of this evolution being felt more than in the development of ultra-small structures whose material properties can be controlled on the nanoscale. The reason for this development: because solid-state nano–structures possess unique optical and electronic properties, they have the potential to be the launching pad of a new generation of devices.

Within the field, researchers are particularly focused on the properties of spins confined within the nano-structures – with the ultimate goal being to use spin nano-systems to develop, for example, robust quantum bits (qubits) capable of storing vast amounts of information. Here, the EU -funded S^3NANO project has successfully developed qubits in a new, innovative form. According to project researchers, these qubits could serve as the information units of the quantum computers of the future.

S^3NANO, which has recently published its full key findings, was a collaborative effort of studies and researchers. It brought together existing studies on the development of new device concepts in the field of few spin solid-state nano-systems with a team of leading international researchers and institutions. Over the course of four years, this ‘few spin solid state nano-system network’ achieved numerous breakthroughs in the understanding and successful utilisation of nanoscale systems in future devices via research, exchange programmes and training sessions.

Read more

Researchers at Queen’s University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics, leading to less heat generation and power consumption in electronic devices which source, detect, and control light.

Speaking about the research, which enables scientists and engineers to quantify how transparent a 2D material is to an electrostatic field, Dr Elton Santos from the Atomistic Simulation Research Centre at Queen’s, said: “In our paper we have developed a theoretical framework that predicts and quantifies the degree of ‘transparency’ up to the limit of one-atom-thick, 2D materials, to an electrostatic field.

“Imagine we can change the transparency of a material just using an electric bias, e.g. get darker or brighter at will. What kind of implications would this have, for instance, in mobile phone technologies? This was the first question we asked ourselves. We realised that this would allow the microscopic control over the distribution of charged carriers in a bulk semiconductor (e.g. traditional Si microchips) in a nonlinear manner. This will help physicists and device engineers to design better quantum capacitors, an array of subatomic power storage components capable to keep high energy densities, for instance, in batteries, and vertical transistors, leading to next-generation optoelectronics with lower power consumption and dissipation of heat (cold devices), and better performance. In other words, smarter smart phones.”

Read more

A collaboration of physicists and a mathematician has made a significant step toward unifying general relativity and quantum mechanics by explaining how spacetime emerges from quantum entanglement in a more fundamental theory. The paper announcing the discovery by Hirosi Ooguri, a Principal Investigator at the University of Tokyo’s Kavli IPMU, with Caltech mathematician Matilde Marcolli and graduate students Jennifer Lin and Bogdan Stoica, will be published in Physical Review Letters as an Editors’ Suggestion “for the potential interest in the results presented and on the success of the paper in communicating its message, in particular to readers from other fields.”

Physicists and mathematicians have long sought a Theory of Everything (ToE) that unifies and quantum mechanics. General relativity explains gravity and large-scale phenomena such as the dynamics of stars and galaxies in the universe, while quantum mechanics explains microscopic phenomena from the subatomic to molecular scales.

The holographic principle is widely regarded as an essential feature of a successful Theory of Everything. The holographic principle states that gravity in a three-dimensional volume can be described by quantum mechanics on a two-dimensional surface surrounding the volume. In particular, the three dimensions of the volume should emerge from the two dimensions of the surface. However, understanding the precise mechanics for the emergence of the volume from the surface has been elusive.

Read more

Quantum mechanics, though firmly tested, is so weird and anti-intuitive that famed physicist Richard Feynman once remarked, “I think I can safely say that nobody understands quantum mechanics.” Attempts to explain some of the bizarre consequences of quantum theory have led to some mind-bending ideas, such as the Copenhagen interpretation and the many-worlds interpretation.

Now there’s a new theory on the block, called the “many interacting worlds” hypothesis (MIW), and the idea is just as profound as it sounds. The theory suggests not only that parallel worlds exist, but that they interact with our world on the quantum level and are thus detectable. Though still speculative, the theory may help to finally explain some of the bizarre consequences inherent in quantum mechanics, reports RT.com.

Related Article: There Is A Mysterious Staggering Connection Between The Déjà Vu Phenomenon And Parallel Universes

Read more

With this week’s overload of news flashes about the Quantum Satellite launch, I restrained from publishing too much repeat news on the launch. However, I came across an excellent article from NASAspaceflight.com that provides additional and good details about some of the initial “publically known” experiments that are to be conducted by the Chinese.

Of course, as with any government agency, not all information is shared.

https://www.nasaspaceflight.com/2016/08/long-march-2d-quantum-communications-satellite/


The Chinese have launched the first satellite that can achieve quantum communications between space and Earth. The launch of the Quantum Science Satellite – called Mozi – took place at 17:40 UTC on Monday using a Long March-2D (Chang Zheng-2D) launch vehicle from the 603 Launch Pad of the LC43 complex at the Jiuquan space center. Chinese Launch: The new satellite is dedicated to quantum science experiments. The Quantum Space Satellite, (or Quantum Experiments at Space Scale) will test the phenomena of quantum entanglement.

Operated by the China Academy of Sciences, this 500 kg satellite – announced as the name “Mozi” in honor of a fifth century BC Chinese scientist – contains a quantum key communicator, quantum entanglement emitter, entanglement source, processing unit, and a laser communicator.

2016-08-14-225132

QUESS will relay transmissions between two ground stations (one in China, and the other in Europe) transmitting quantum keys.

Read more