Toggle light / dark theme

Another (more in depth) on Lockheed’s efforts on Space Travel leveraging Quantum Entanglement.


It’s called quantum entanglement, it’s extremely fascinating and counter to what we believe to be the known scientific laws of the universe, so much so that Einstein himself could not wrap his head around it. Although it’s called “quantum entanglement,” though Einstein referred to it as “spooky action at a distance.”

Recent research has taken quantum entanglement out of the theoretical realm of physics, and placed into the one of verified phenomena. An experiment devised by the Griffith University’s Centre for Quantum Dynamics, led by Professor Howard Wiseman and his team of researchers at the university of Tokyo, recently published a paper in the journal Nature Communications confirming what Einstein did not believe to be real: the non-local collapse of a particle’s wave function. (source)(source), and this is just one example of many.

They did this by splitting a single photon between two laboratories, and testing whether measurement of it in one laboratory would actually cause a change in the local quantum state in the other laboratory. In doing so, researchers were able to verify the entanglement of the split single photon.

Read more

A couple of years ago, researchers at NASA’s Johnson Space Centre discovered a thruster system which actually generates thrust, despite requiring absolutely no propellant. The implications of this discovery are far-reaching; applications for space flight and other technologies which require propulsion could one day become far cheaper, allowing space exploration to expand exponentially. The existence of this technology also further validates the fact that energy can be derived from tapping into the quantum vacuum, also known as “zero-point.”

Bottom line is that space is not empty, and the energy which lies within it can be used. This was experimentally confirmed when the Casimir Effect illustrated zero point or vacuum state energy, which predicts that two metal plates close together attract each other due to an imbalance in the quantum fluctuations (source)(source).

The propellant-less thruster is called the Cannae Drive, invented by Guido Fetta, and was tested by NASA over an eight day testing campaign that took place in August of 2013. It’s also known as the EM drive. It showed that a small amount of thrust was achieved inside a container, again, without the use of any fuel. The results were then presented at the 50th Joint Propulsion Conference in Cleveland, Ohio in July the next year.

Read more

If all goes according to the plan, tech giant Google might be able to present the world with a phenomenally powerful quantum computer by the end of 2017.

Googler John Martinis and his team of researchers have been working on how quantum computers could be worked out for a long duration of 30 years. And now, it seems, they’re finally on the verge of making the wonder computer a reality. Since the computer would harness the unusual properties of quantum physics that take birth in extreme circumstances like those on the ultra-cold chip, the wonder computer would allow a Google coder to run the calculations he/she requires in a short interval of time like in the duration of a tea/coffee break. This would be quite impressive as the supercomputers of today would take millions of years to run the same calculations. This means, the quantum computer would be able to outperform conventional computers—a concept known as quantum supremacy. But, the Google software, which has been developed on ordinary computers to answer questions or drive cars, is still capable of becoming more intelligent.

Read more

Read a little further into the paper, and things get really weird. If the equations of quantum mechanics must be altered in accordance with the new research, then it will give rise to a new and very curious definition of time.

Time is, essentially, a “crystal”—a highly organized lattice of discrete “particles,” or regularly repeating segments.

“The physical universe is really like a movie/motion picture, in which a series of still images shown on a screen creates the illusion of moving images,” said Mir Faizal of the University of Waterloo and the University of Lethbridge in Canada, and lead author of the paper.

Read more

Nice article; however, disappointed that the author expanded the exploration of programming in Quantum to include Google, MIT, U. Sydney, etc. who all have been exploring the programming on QC. D-Wave indeed is doing a lot in this space and has been even training numerous US Government personnel on QC; just would be interesting to learn more about the advances in this space from other players who have been sharing for several months their breakthroughs in programming QC.


The jury is still out when it comes to how wide-ranging the application set and market potential for quantum computing will be. Optimistic estimates project that in the 2020s it will be a billion-dollar field, while others expect the novelty will wear off and the one company behind the actual production of quantum annealing machines will go bust.

Ultimately, whichever direction the market goes with quantum computing will depend on two things. First, the ability for applications of sufficient value to warrant the cost of quantum systems have to be in place. Second, and connected to that point, is the fact that enough problems can be mapped to these machines—a tricky problem that if not solved, will lead to a limited ecosystem of capabilities and, of course, developers.

There is no doubt D-Wave understands this. The company is getting in front of those challenges by hosting quantum computing programming courses designed to onboard new developers. As one might imagine, however, determining the right background for participants is as nebulous as the future of the quantum computing ecosystem.

Read more

Rotating black holes can implement quantum gates and quantum circuits, like Bell states, which are quantum counterparts of the classical computer programing.


The black holes sparked the public imagination for almost 100 years. Their presence in the universe has been debated for long; however, the detection of X-ray radiation coming from the center of the galaxies has put an end to the discussion and undoubtedly proven their existence.

The vast majority, if not all, of the known black holes were unveiled by detecting the X-ray radiation emitted by the stellar material around them. Black holes emit X-ray radiation, light with high energy, due to the extreme gravity in their vicinity. X-ray photons emitted near rotating black holes not only exposed the existence of these phantom-like astrophysical bodies, but also seem to carry hidden quantum messages.

A recent article posted in the pre-printed arXiv (“Photonic Bell states creation around rotating black holes”) argues that X-ray radiation coming from fast spinning black holes encompasses quantum information.

black hole

Read more

Not a complete list — where are al the various joint ventures & start ups that are also in play; however, what about all those Laboratories (Governmental, Universities, and joint venture related labs) such as Los Alamos or ORNL or MIT or USC, and what about all of the governmental agencies (NASA, DoD, etc.), and how about all of those special programs like DARPA. And, this is only the US not to mention what has been happening in China, Australia, Canada, UK, Spain, Germany, Russia, Singapore, etc.

Nice article to use as a starting list only; itmissed many, many other companies, labs, universities, and governments who are really leading most of the progress forward in QC. Some start up to add — Qubitekk, QC Ware, Rigetti Computing to just name 3 off the top of my head. Article is missing a lot in its list.


Google, Microsoft, and Airbus are investing in quantum computing. In all, we identified 18 corporates developing the tech, or partnering with startups like D-Wave to do so, and what they hope to achieve.

Read more

We illustrate how it is possible to calculate the quantum gravitational effects on the spectra of primordial scalar/tensor perturbations starting from the canonical, Wheeler-De Witt, approach to quantum cosmology. The composite matter-gravity system is analysed through a Born-Oppenheimer approach in which gravitation is associated with the heavy degrees of freedom and matter (here represented by a scalar field) with the light ones. Once the independent degrees of freedom are identified the system is canonically quantised. The differential equation governing the dynamics of the primordial spectra with its quantum-gravitational corrections is then obtained and is applied to diverse inflationary evolutions. Finally, the analytical results are compared to observations through a Monte Carlo Markov Chain technique and an estimate of the free parameters of our approach is finally presented and the results obtained are compared with previous ones.

Read this paper on arXiv…

A. Kamenshchik, A. Tronconi and G. Venturi Tue, 13 Sep 16 11/91.

Read more

WASHINGTON — Researchers have developed a new laser that makes it possible to measure electron transition energies in small atoms and molecules with unprecedented precision. The instrument will help scientists test one of the bedrock theories of modern physics to new limits, and may help resolve an unexplained discrepancy in measurements of the size of the proton.

The team will present their work during the Frontiers in Optics (FiO) / Laser Science (LS) conference in Rochester, New York, USA on 17 −21 October 2016.

“Our target is the best tested theory there is: quantum electrodynamics,” said Kjeld Eikema, a physicist at Vrije University, The Netherlands, who led the team that built the laser. Quantum electrodynamics, or QED, was developed in the 1940s to make sense of small unexplained deviations in the measured structure of atomic hydrogen. The theory describes how light and matter interact, including the effect of ghostly ‘virtual particles.’ Its predictions have been rigorously tested and are remarkably accurate, but like extremely dedicated quality control officers, physicists keep ordering new tests, hoping to find new insights lurking in the experimentally hard-to-reach regions where the theory may yet break down.

Read more

Electromagnetic waves created on a layer of organic molecules could provide the perfect on-chip light source for future quantum communication systems.

A team of scientists including researchers at Agency for Science, Technology and Research (A*STAR), Singapore, has captured tiny flashes of light from an ultrathin layer of organic molecules sandwiched between two electrodes that could replace lasers and LEDs as signal sources for future miniature, ultrafast quantum computing and light-based communication systems.

To investigate electromagnetic waves called plasmons, which skim along the interface between two materials, Nikodem Tomczak from the A*STAR Institute of Materials Research and Engineering and colleagues collaborated with Christian A. Nijhuis from the National University of Singapore to construct a junction consisting of a layer of thiol molecules on a metal electrode and liquid gallium-indium alloy as a top electrode.

Read more