Toggle light / dark theme

Single neutral atoms trapped individually in optical microtraps are incredibly useful tools for studying quantum physics, as the atoms then exist in complete isolation from the environment. Arrays of optical microtraps containing single atoms could enable quantum logic devices, quantum information processing, and quantum simulation.

While single atom trapping has already been achieved, there are still many challenges to overcome. One such challenge is making sure each trap holds no more than one atom at a time, and also keeping it there so it won’t escape. This requires uniform optical microtraps, which have yet been fully realized.

Now, Ken’ichi Nakagawa and co‐workers at the University of Electro‐Communications, Tokyo, Japan, together with scientists across Japan and China, have successfully demonstrated an optimization method for ensuring the creation of uniform holographic microtrap arrays to capture single rubidium (87Rb) atoms.

Read more

https://youtube.com/watch?v=2q4z6HnB-Tg

This type of computer not really 4 personal use. Because it calculates in every possible way its task in a fraction of second. I belive that this type of computer is built to run ai. Or to run recognition software just to give example. But just imagine the possibilities.


Quantum physics, with its descriptions of bizarre properties like entanglement and superposition, can sound like a science fiction fever dream. Yet this branch of physics, no matter how counterintuitive it seems sometimes, describes the universe all around us: As physicists have told often told me, we live in a quantum world. Soon, this will be better reflected in our technology, and everything it can do.

“We’re moving towards a new paradigm for computation,” quantum information scientist Michele Mosca, who’s based at the Institute for Quantum Computing at the University of Waterloo, recently told me. He compared this shift in thinking to when humanity abandoned the flat Earth hypothesis and accepted that our world is round.

“We realized that [our pictures of the surface of the Earth] should embed on a sphere, not a flat surface,” he said. “Now our maps make sense.” Before, we were looking at them the wrong way, and the picture was distorted. Not anymore.

Read more

Most people will be familiar with Moore’s Law which states that the number of transistors it’s possible to get on a microprocessor doubles every 18 months. If this holds true it means that some time in the 2020s we’ll be measuring these circuits on an atomic scale.

You might think that that’s where everything comes to a juddering halt. But the next step from this is the creation of quantum computers which use the properties of atoms and molecules to perform processing and memory tasks.

If this all sounds a bit sci-fi, it’s because practical quantum computers are still some way in the future. However, scientists have already succeeded in building basic quantum computers that can perform certain calculations. And when practical quantum computing does arrive it has the potential to bring about a change as great as that delivered by the microchip.

Read more

In Brief.

Researchers have published a paper demonstrating how they were able to create the first fully programmable and reprogrammable quantum computer in the world. Other quantum computers in existence at the moment can only run one type of operation.

While several other teams and companies, including computer technology giant IBM, are in on the race towards quantum computing, all the quantum computers presented thus far can only run one type of operation—which is ironic, seeing as quantum computers can theoretically run more operations than there are atoms in the universe.

Read more

Machines enrich and enhance our lives, whether it’s the smartphones that allow us to stay connected or the supercomputers that solve our toughest computational problems. Imagine how much more productive and innovative our world will be when computers become infinitely more powerful. Indeed, the growing field of quantum computing may make our current technological capacities look feeble and primitive in comparison. It could even transform the workings of the human brain and revolutionize how we think in ways we can’t begin to imagine.

Today, computers operate at the most basic level by manipulating two states: a zero or a one. In contrast, quantum computers are not limited to two states, but can encode information in multiple states that exist in superposition, also known as quantum bits or qubits.

this-is-your-brain-on-quantum-computers-41

In other words, this technology takes advantage of one of the most fascinating properties of the quantum world: the ability of subatomic particles to exist in more than one state at any given time. Consequently, a quantum computer can perform many calculations at the same time, whereas a traditional Turing machine can only perform a single calculation at once. Such quantum machines will be millions of times more powerful than our most powerful current computers.

Read more

If a tree falls in the forest and there’s no one around to hear it, does it make a sound? The obvious answer is yes—a tree falling makes a sound whether or not we hear it—but certain experts in quantum mechanics argue that without an observer, all possible realities exist. That means that the tree both falls and doesn’t fall, makes a sound and is silent, and all other possibilities therein. This was the crux of the debate between Niels Bohr and Albert Einstein. Learn more about it in the video below.

Does reality exist when we’re not watching?

Read more

Winfried Hensinger is the director of the Sussex Centre for Quantum Technologies in England, and he has spent a lifetime devoted to studying the ins and outs of quantum mechanics and just what it can do for us. When Hensinger first started in the field, quantum computing was still very much a theory, but now it is all around us, and various projects are within reach of creating a universal quantum computer. So, now that scientists are taking quantum computing more seriously it won’t be long before the field begins to explode and applications that we never even imagined possible will become available to use.

Read more

As the saying goes, “If you want something done right, you gotta do it yourself,” and it seems that you’ll soon be able to get a lot more done using artificially intelligent, high-tech exoskeleton Kindred. It’s the product of a startup created by quantum computing company D-Wave’s founder Geordie Rose, and according to the venture capital firm funding Kindred, the device “uses AI-driven robotics so that one human worker can do the work of four.”

Based on a patent application, the wearable system is envisioned as a 1.2-meter tall humanoid that may be covered with synthetic skin. It will include a head-mounted display and an exo-suit of sensors and actuators that carries out everyday tasks.

Essentially, it looks something like Spider-Man’s Doctor Octopus on the outside, but on the inside, Kindred utilizes quantum computation, a way of information processing and storage that is much faster and more powerful than that used by conventional computers. Data “learned” by the suit can be taught to other robots, allowing those robots to then perform the tasks autonomously.

Read more

Scientists all around the world are working towards making the quantum computing a reality for past few years as it will bring another revolution in the world of technology. Quantam computers are thousands of times faster and way smaller than the conventional computing devices as they use photons to do computing and are also compatible with fibre optics.

A team of researchers from the University of Innsbruck in Austria claims that they have invented world’s first scalable quantum computer. Although the device is still several years behind coming to reality but still scientists consider it as a giant leap towards bringing quantum computers into people’s hands.

From hypothetical models in last decade to practical models now is promising. Former Microsoft CEO Bill Gates believes that we will make quantum computers by next decade. This promising, complex technology may soon amplify the capabilities of today’s computers, which will greatly benefit science and business organizations by helping them work faster and more efficiently. Quantum computers are next step of computers and they can solve problems with ease which are nearly impossible for computers and supercomputers of current generation.

Read more

“It’s clear that the light is trapped — there are photons circulating around the atoms,” Everett says. “The atoms absorbed some of the trapped light, but a substantial proportion of the photons were frozen inside the atomic cloud.”

Co-researcher Geoff Campbell from ANU explained that while photons commonly pass by each other at the speed of light without any interactions, atoms interact with each other more freely.

“Corralling a crowd of photons in a cloud of ultra-cold atoms creates more opportunities for them to interact,” Campbell says.

Read more