Toggle light / dark theme

Researchers at the National Institute of Information and Communications Technology, in collaboration with researchers at the Nippon Telegraph and Telephone Corporation and the Qatar Environment and Energy Research Institute have discovered qualitatively new states of a superconducting artificial atom dressed with virtual photons.

The discovery was made using spectroscopic measurements on an artificial atom that is very strongly coupled to the light field inside a superconducting cavity. This result provides a new platform to investigate the interaction between light and matter at a fundamental level, helps understand quantum phase transitions and provides a route to applications of non-classical light such as Schrödinger cat states.

It may contribute to the development of quantum technologies in areas such as quantum communication, quantum simulation and computation, or quantum metrology.

Read more

For the first time, scientists have observed the formation of quasiparticles — a strange phenomenon observed in certain solids — in real time, something that physicists have been struggling to do for decades.

It’s not just a big deal for the physics world — it’s an achievement that could change the way we build ultra-fast electronics, and could lead to the development of quantum processors.

But what is a quasiparticle? Rather than being a physical particle, it’s a concept used to describe some of the weird phenomena that happen in pretty fancy setups — specifically, many-body quantum systems, or solid-state materials.

Read more

As I have continued for over a year to repeat that for any company or government entity to not include QC in their 5+ yrs future state roadmap is truly enabling their company or government to be easy pickings for hackers.


Quantum scientist Michele Mosca will discuss security in the coming quantum age during a live Webcast tonight at 7 P.M.

Read more

Stockholm: The Nobel Physics prize was the second of the awards to be given away, on Tuesday, to a Birtish trio — scientists David Thouless, Duncan Haldane and Michael Kosterlitz for revealing the secrets of exotic matter.

Thouless, 82, is professor emeritus at the University of Washington in Seattle. Haldane, 65, is a professor at Princeton University, and Kosterlitz, born in 1942, teaches at Brown University in Providence, Rhode Island. The laureates will share the eight million Swedish kronor (around $931,000 or 834,000 euros) prize sum. Thouless won one-half of the prize, while Haldane and Hosterlitz share the other half.

“This year’s laureates opened the door on an unknown world where matter can assume strange states. They have used advanced mathematical methods to study unusual phases, or states, of matter, such as superconductors, superfluids or thin magnetic films. Thanks to their pioneering work, the hunt is now on for new and exotic phases of matter,” said the Nobel jury.

Read more