Toggle light / dark theme

Transistors are tiny switches that form the bedrock of modern computing; billions of them route electrical signals around inside a smartphone, for instance.

Quantum computers will need analogous hardware to manipulate quantum information. But the design constraints for this new technology are stringent, and today’s most advanced processors can’t be repurposed as quantum devices. That’s because quantum information carriers, dubbed qubits, have to follow different rules laid out by quantum physics.

Scientists can use many kinds of quantum particles as qubits, even the photons that make up . Photons have added appeal because they can swiftly shuttle information over long distances, and they are compatible with fabricated chips. However, making a quantum transistor triggered by light has been challenging because it requires that the photons interact with each other, something that doesn’t ordinarily happen on its own.

Read more

Diamonds are prized for their purity, but their flaws might hold the key to a new type of highly secure communications.

Princeton University researchers are using to help create a communication network that relies on a property of subatomic particles known as their quantum state. Researchers believe such quantum information networks would be extremely secure and could also allow new quantum computers to work together to complete problems that are currently unsolvable. But scientists currently designing these networks face several challenges, including how to preserve fragile quantum information over long distances.

Now, researchers have arrived at a possible solution using synthetic diamonds.

Read more

Chinese physicists realized a genuine entanglement of 18 quantum particles, beating their own world record set in 2016, while the team has set their next goal at 50-qubit entanglement.

The result of the study was published in the US journal Physical Review Letters on June 28. Chinese leading quantum physicist Pan Jianwei led the project. Together with his team, Pan earlier demonstrated quantum entanglement with 10 quantum bits, or “qubits,” in 2016, according to a report sent by Pan’s team to Global Times on Tuesday.

Quantum entanglement is a weird phenomenon which Einstein called “spooky action at a distance” where quantum particles are connected “even if they are at opposite ends of the universe,” an Australia-based Cosmos Magazine reported.

Read more

Satya Nadella, the chief executive officer of Microsoft Corp., calls quantum computing one of three emerging technologies that will radically reshape the world, along with artificial intelligence and augmented reality. But it’s easier to describe quantum computing’s importance — that is, its potential importance, because it barely exists now — than to say what it is. Understanding quantum mechanics, whose principles underpin quantum computing, involves a lot of mental mountain climbing. Someth.

Read more

A good intro to QUANTUM COMPUTERS, at 5 levels of explanations — from kid-level to expert.


WIRED has challenged IBM’s Dr. Talia Gershon (Senior Manager, Quantum Research) to explain quantum computing to 5 different people; a child, teen, a college student, a grad student and a professional.

Still haven’t subscribed to WIRED on YouTube? ►► http://wrd.cm/15fP7B7

ABOUT WIRED
WIRED is where tomorrow is realized. Through thought-provoking stories and videos, WIRED explores the future of business, innovation, and culture.

Quantum computing expert explains one concept in 5 levels of difficulty | WIRED.

Read more

The way that electrons paired as composite particles or arranged in lines interact with each other within a semiconductor provides new design opportunities for electronics, according to recent findings in Nature Communications.

What this means for , such as those that send information throughout , is not yet clear, but hydrostatic can be used to tune the interaction so that electrons paired as composite particles switch between paired, or “superconductor-like,” and lined-up, or “nematic,” phases. Forcing these phases to interact also suggests that they can influence each other’s properties, like stability – opening up possibilities for manipulation in electronic devices and quantum computing.

“You can literally have hundreds of different phases of electrons organizing themselves in different ways in a semiconductor,” said Gábor Csáthy, Purdue professor of physics and astronomy. “We found that two in particular can actually talk to each other in the presence of hydrostatic pressure.”

Read more

Recommended Books ➤

📖 Life 3.0 — http://azon.ly/ij9u
📖 The Master Algorithm — http://azon.ly/excm
📖 Superintelligence — http://azon.ly/v8uf

This video is the ninth in a multi-part series discussing computing and the second discussing non-classical computing. In this video, we’ll be discussing what quantum computing is, how it works and the impact it will have on the field of computing.

[0:28–6:14] Starting off we’ll discuss, what quantum computing is, more specifically — the basics of quantum mechanics and how quantum algorithms will run on quantum computers.

[6:14–9:42] Following that we’ll look at, the impact quantum computing will bring over classical computers in terms of the P vs NP problem and optimization problems and how this is correlated with AI.

[9:42–14:00] To conclude we’ll discuss, current quantum computing initiatives to reach quantum supremacy and ways you can access the power of quantum computers now!

Read more

Quantum computers, once they become common, will complete difficult tasks thousands of times more quickly than current PCs. That could obviously threaten a classic chipmaker like Intel, but it plans to use its knowledge of silicon production to build quantum chips more quickly than its peers.

Read more