Toggle light / dark theme

During the 1930s, venerable theoretical physicist Albert Einstein returned to the field of quantum mechanics, which his theories of relativity helped to create. Hoping to develop a more complete theory of how particles behave, Einstein was instead horrified by the prospect of quantum entanglement — something he described as “spooky action at a distance.”

Despite Einstein’s misgivings, quantum entanglement has gone on to become an accepted part of quantum mechanics. And now, for the first time ever, a team of physicists from the University of Glasgow took an image of a form of quantum entanglement (aka Bell entanglement) at work. In so doing, they managed to capture the first piece of visual evidence of a phenomenon that baffled even Einstein himself.

The paper that described their findings, titled “Imaging Bell-type nonlocal behavior,” recently appeared in the journal Science Advances. The study was led by Dr. Paul-Antoine Moreau, a Leverhulme Early Career Fellow at the University of Glasgow, and included multiple researchers from Glasgow’s School of Physics & Astronomy.

Scientists believe they’ve made a concrete example of an unusual, theoretical form of ferromagnetism first described by a researcher more than 50 years ago.

Nagaoka ferromagnetism, named for the scientist who discovered it, Yosuke Nagaoka, is a special case of the same magnetic forces that make regular, refrigerator-type magnets work—ferro meaning iron, plus a few other metals that are naturally receptive to magnetism. Identifying it in real life—in this case using a quantum system of electrons—can help scientists understand how spontaneous ferromagnetism works.

Google is racing to develop quantum-enhanced processors that use quantum mechanical effects to increase the speed at which data can be processed. In the near term, Google has devised new quantum-enhanced algorithms that operate in the presence of realistic noise. The so-called quantum approximate optimisation algorithm, or QAOA for short, is the cornerstone of a modern drive toward noise-tolerant quantum-enhanced algorithm development.

The celebrated approach taken by Google in QAOA has sparked vast commercial interest and ignited a global research community to explore novel applications. Yet, little is known about the ultimate performance limitations of Google’s QAOA .

A team of scientists from Skoltech’s Deep Quantum Laboratory took up this contemporary challenge. The all-Skoltech team led by Prof. Jacob Biamonte discovered and quantified what appears to be a fundamental limitation in the widely adopted approach initiated by Google.

A team of scientists in China has linked quantum memories over more than 30 miles (50 kilometers) of fiber optic cable, beating the previous record by more than 40 times over. This feat is an important step toward a hack-proof internet, scientists said.

The internet we use today was truly a revolutionary invention. It connected the world with information and allowed us to share millions of photos of cute and cuddly cats. But the internet is also filled with hackers trying to intercept important or sensitive information. To fight back, physicists have come up with a solution, with a little help from Schrödinger’s cat, the famous, hypothetical dead-and-alive feline meant to expose the weird nature of subatomic particles.

Circa 2019


Google claims it has designed a machine that needs only 200 seconds to solve a problem that would take the world’s fastest supercomputer 10,000 years to figure out.

The speed achieved by the computer represents a breakthrough called “quantum supremacy,” according to a blog post from the company and an accompanying article in the scientific journal Nature.

The results announced Wednesday herald the rise of quantum computers, which can store and process much more information than their classical cousins by tapping into the powerful forces contained in the field of physics known as quantum mechanics.

“The best-kept secret in quantum computing.” That’s what Cambridge Quantum Computing (CQC) CEO Ilyas Khan called Honeywell’s efforts in building the world’s most powerful quantum computer. In a race where most of the major players are vying for attention, Honeywell has quietly worked on its efforts for the last few years (and under strict NDA’s, it seems). But today, the company announced a major breakthrough that it claims will allow it to launch the world’s most powerful quantum computer within the next three months.

In addition, Honeywell also today announced that it has made strategic investments in CQC and Zapata Computing, both of which focus on the software side of quantum computing. The company has also partnered with JPMorgan Chase to develop quantum algorithms using Honeywell’s quantum computer. The company also recently announced a partnership with Microsoft.

In 1966, Japanese physicist Yosuke Nagaoka predicted the existence of a rather striking phenomenon: Nagaoka’s ferromagnetism. His rigorous theory explains how materials can become magnetic, with one caveat: the specific conditions he described do not arise naturally in any material. Researchers from QuTech, a collaboration between TU Delft and TNO, have now observed experimental signatures of Nagaoka ferromagnetism using an engineered quantum system. The results were published today in Nature.

Familiar magnets such as the ones on your refrigerator are an everyday example of a phenomenon called . Each electron has a property called ‘spin’, which causes it to behave like a miniscule magnet itself. In a ferromagnet, the spins of many electrons align, combining into one large magnetic field. This seems like a simple concept, but Nagaoka predicted a novel and surprising mechanism by which ferromagnetism could occur—one that had not been observed in any system before.

If it works, they would be able to input quantum information into one “black hole” circuit, which would scramble, then consume it. After a little while, that information would pop out of the second circuit, already unscrambled and decrypted. That sets it apart from existing quantum teleportation techniques, Quanta reports, as transmitted information emerges still fully scrambled and then needs to be decrypted, making the process take longer and be less accurate as an error-prone quantum computer tries to recreate the original message.

While the idea of entangled black holes and wormholes conjures sci-fi notions of intrepid explorers warping throughout the cosmos, that’s not quite what’s happening here.

Rather, it’s an evocative way to improve quantum computing technology. Recreating and entangling the bizarre properties of black holes, University of California, Berkely researcher Norman Yao told Quanta, would “allow teleportation on the fastest possible timescale.”