Toggle light / dark theme

Wow; Europe is growing more nervous.


WASHINGTON: The Russian threat has driven Sweden so close to NATO that the once-neutral nation is becoming an ally in all but name. While the current Swedish government won’t apply for NATO membership — a position it just reiterated Friday — every other kind of collaboration is not only on the table, but actually happening more and more.

Recent agreements are bringing Sweden into NATO policy councils and wargame planning in unprecedented ways. Sweden is building up its forces to keep an ever closer watch on Russia both in the Arctic and the Baltic. A Host Nation Agreement — signed just months after Russia’s annexation of Crimea — makes it easier for NATO to operate in Swedish territory (if invited). Sweden has even sent troops to Afghanistan. With friends like these, who needs formal allies?

Read more

In preparation for writing a review of the Unabomber’s new book, I have gone through my files to find all the things I and others had said about this iconic figure when he struck terror in the hearts of technophiles in the 1990s. Along the way, I found this letter written to a UK Channel 4 producer on 26 November 1999 by way of providing material for a television show in which I participated called ‘The Trial of the 21st Century’, which aired on 2 January 2000. I was part of the team which said things were going to get worse in the 21st century.

What is interesting about this letter is just how similar ‘The Future’ still looks, even though the examples and perhaps some of the wording are now dated. It suggests that there is a way of living in the present that is indeed ‘future-forward’ in the sense of amplifying certain aspects of today’s world beyond the significance normally given to them. In this respect, the science fiction writer William Gibson quipped that the future is already here, only unevenly distributed. Indeed, it seems to have been here for quite a while.

Dear Matt,

Here are the sum of my ideas for the Trial of the 21st Century programme, stressing the downbeat:

Although the use of the internet is rapidly spreading throughout the world, it is also spreading at an alarmingly uneven rate, creating class divisions within nations much sharper than before. (Instead of access to the means of production, it is now access to the means of communication that is the cause of these divisions.) A good example is India, where most of the population continues to live in abject poverty (actually getting poorer relative to the rest of the world), while a Silicon Valley style community thrives in Bangalore with close ties to the West and a growing scepticism toward India’s survival as a democracy that pretends to incorporate the interests of the entire country. (The BBC world service did a story a couple of years ago after one of the elections, arguing that this emerging techno-middle-class is, despite its Western ties, are amongst those most likely to accept the rule of a dictator who could do a ‘Mussolini’ and make the trains run on time, and otherwise protect the interests of these nouveaux riches, etc.) In this respect, the spread of the internet to the Third World is actually a politically destabilizing force, creating the possibility of a new round of authoritarian regimes. This tendency is compounded by a general decline of the welfare state mentality, so that these new dictators wouldn’t even need to pay lip service to taking care of the masses, as long as the middle classes are given preferential tax rates, etc.

But even in the West, the easy access to the internet has political unsavoury consequences. As more people depend on the internet as a provider of goods, information, entertainment, etc., and regulation of the net is devolved into many commercial hands, it will be increasingly tempting for techno-terrorists to strike by: corrupting, stealing and recoding materials stored therein. In other words, we should see a new generation of people who are the spiritual offspring of the Unabomber and average mischievous hacker. Indeed, many of these people may be motivated by a populist, democratic sentiment associated with a particular ethnic or cultural group that is otherwise ‘info-poor’. Such techno-terrorism is likely to be effective when the offending Western parties are far from those of the offended peoples – one wouldn’t need to smuggle people and arms into Heathrow; one could just push the delete button 5000 miles away… I am frankly surprised that the major stock exchanges and the air traffic control system haven’t yet been sabotaged, considering how easy it is for major disruptions to occur even without people trying very hard. These two computerized systems are prime candidates because the people most directly affected are likely to be relatively well-heeled. In contrast, sabotaging various military defence systems could lead to the death of millions of already disadvantaged people, so I doubt that they would be the target of techno-terrorists (though they may be the target of a sociopathic hacker…)

One seemingly good feature of our emerging networked world is that we can customize our consumption better than ever. However, this customization means that we are providing more of our details to sources capable of exploiting them — not only through marketing, but also through surveillance. In this respect, remarks about the ‘interactivity’ of the internet should be seen as implying that others may be able to ‘see ‘through’ you while you are merely ‘looking at’ them. While this opens up the possibility of government censorship, a bigger threat may be the way in which access to certain materials may be ‘implicitly regulated’ by the ‘invisible hand’ of website hits. Thus, if a site gets a consistently large number of hits, it may suddenly start charging a pay-per-view fee, whereas those getting few hits may simply be taken off cyberspace by commercial servers. This could have especially pernicious consequences for the amount and type of news available (think about what sorts of stories would be expensive to access if news coverage were entirely consumer-driven), as well as on-line distance learning courses.

Here we see the dark side of the ‘user friendliness’ of the net: it basically mimics and reinforces what we already do until we get locked in. (In other words: spontaneous preferences are turned into prejudices and perhaps even addictions.) In the past, government and even businesses saw themselves in the role of educating or, in some other way, challenging people to change their habits. But this is no longer necessary, and may be even inconvenient as a means to a docile citizenry. (Aldous Huxley’s Brave New World was ahead of the curve here.)

There are also some problems arising from advances in biotechnology:
1. As we learn more about people’s genetic makeup, that information will become part of the normal ways we account for ourselves – especially in legal settings. For example, you may be guilty of alcohol-related offences even if you are below the ‘legal limit’, if it’s shown that you’re genetically predisposed to get drunk easily. (Judges have already made such rulings in the US.) Ironically, then, although we have no say in our genetic makeup, we will be expected not only to know it, but also to take responsibility for it.
2. In addition, while our personal genetic information will be generally available (e.g. used by insurance companies to set premiums), it may also be patented as intellectual property legislation seems to be allowing the patenting of substances that already exist in nature as long as the means is artificial (e.g. biochemical synthesis of genetic material for medical treatments).
3. This fine-grained genetic information will refuel the fires of the politics of discrimination, both in its negative and positive extremes: i.e. those who want to take a distinctive genetic pattern as the basis of extermination or valorization. (A good case in point is the drive to recognize homosexuality as genetically based: both pro- and anti-gay groups seem to embrace this line, even though it could mean either preventing the birth of gay children or accepting gayness as a normal tendency in humanity)

Finally, there are some general problems with the future of knowledge production:
1. It will become increasingly difficult to find support – both intellectual and financial — for critical work that aims to overturn existing assumptions and open up new lines of inquiry. This is because current lines of research – especially in the experimentally driven side of the natural sciences – have already invested so much money, people and other resources that to suggest that, say, high-energy physics is intellectually bankrupt or that the human genome project isn’t telling us much more than we already know would amount to throwing lots of people out of work, ruining reputations and perhaps even causing a general backlash against science in society at large (since public conceptions of science are so closely tied to these high-profile projects).
2. Traditionally radical ideas have been promoted in science – at least in part –- because the research behind the ideas did not cost much to do, and not much was riding on who was ultimately correct. However, this idyllic state of affairs ended with World War II. Indeed, it has gotten so bad – and will get worse in the future – that one can speak of a kind of ‘financial censorship’ in science. For example, Peter Duesberg, who discovered the ‘retrovirus’, lost his grants from the US National Institute of Health because he publicly denied the HIV-AIDS link. One result of this financial censorship is that radical researchers will migrate to private funders who are willing to take some risks: e.g. cold fusion research continues today in this fashion. The big downside of this possibility, though, is that if this radical research does bear fruit, it’s likely to become the intellectual property of the private funder and not necessarily used for the public good.

I hope you find these remarks helpful. Leave a message at … when you’re able to talk.

Yours,

Steve

The odds that artificial intelligence will enslave or eliminate humankind within the next decade or so are thankfully slim. So concludes a major report from Stanford University on the social and economic implications of artificial intelligence.

At the same time, however, the report concludes that AI looks certain to upend huge aspects of everyday life, from employment and education to transportation and entertainment. More than 20 leaders in the fields of AI, computer science, and robotics coauthored the report. The analysis is significant because the public alarm over the impact of AI threatens to shape public policy and corporate decisions.

It predicts that automated trucks, flying vehicles, and personal robots will be commonplace by 2030, but cautions that remaining technical obstacles will limit such technologies to certain niches. It also warns that the social and ethical implications of advances in AI, such as the potential for unemployment in certain areas and likely erosions of privacy driven by new forms of surveillance and data mining, will need to be open to discussion and debate.

Read more

Predicting an economic “singularity” approaching, Kevin Carson from the Center for a Stateless Society writes in The Homebrew Industrial Revolution (2010) we can look forward to a vibrant “alternative economy” driven less and less by corporate and state leviathans.

According to Carson, “the more technical advances lower the capital outlays and overhead for production in the informal economy, the more the economic calculus is shifted” (p. 357). While this sums up the message of the book and its relevance to advocates of open existing and emerging technologies, the analysis Carson offers to reach his conclusions is extensive and sophisticated.

With the technology of individual creativity expanding constantly, the analysis goes, “increasing competition, easy diffusion of new technology and technique, and increasing transparency of cost structure will – between them – arbitrage the rate of profit to virtually zero and squeeze artificial scarcity rents” (p. 346).

An unrivalled champion of arguments against “intellectual property”, the author believes IP to be nothing more than a last-ditch attempt by talentless corporations to continue making profit at the expensive of true creators and scientists (p. 114–129). The view has significant merit.

“The worst nightmare of the corporate dinosaurs”, Carson writes of old-fashioned mass-production-based and propertied industries, is that “the imagination might take a walk” (p. 311). Skilled creators could find the courage to declare independence from big brands. If not now, in the near future, technology will be advanced and available enough that the creators and scientists don’t need to work as helpers for super-rich corporate executives. Nor will the future see such men and women kept at dystopian, centralized factories.

Pointing to the crises of overproduction and waste, together with seemingly inevitable technological unemployment, Carson believes corporate capitalism is at death’s door. Due to “terminal crisis”, not only are other worlds possible but “this world, increasingly, is becoming impossible” (p. 82). Corporations, the author persuades us, only survive because they live off the subsidies of the government. But “as the system approaches its limits of sustainability”, “libertarian and decentralist technologies and organizational forms” are destined to “break out of their state capitalist integument and become the building blocks of a fundamentally different society” (p. 111–112).

Giant corporations are no longer some kind of necessary evil needed to ensure wide-scale manufacture and distribution of goods in our globalized world. Increasingly, they are only latching on to the talents of individuals to extract rents. They may even be neutering technological modernity and the raising of living standards, to extract as much profit as possible by allowing only slow improvements.

And why should corporations milk anyone, if those creators are equipped and talented enough to work for themselves?

The notion of creators declaring independence is not solely a question of things to come. While Kevin Carson links the works of Karl Hess, Jane Jacobs and others (p. 192–194) to imagine alternative friendly, localized community industries of a high-tech nature that will decrease the waste and dependency bred by highly centralized production and trade, he also points to recent technologies and their social impact.

“Computers have promised to be a decentralizing force on the same scale as electrical power a century earlier” (p. 197), the author asserts, referring to theories of the growth of electricity as a utility and its economic potential. From the subsequent growth of the internet, blogging is replacing centralized and costly news networks and publications to be the source of everyone’s information (p. 199). The decentralization brought by computers has meant “the minimum capital outlay for entering most of the entertainment and information industry has fallen to a few thousand dollars at most, and the marginal cost of reproduction is zero” (p. 199).

The vision made possible by books like Kevin Carson’s might be that one day, not only information products but physical products – everything – will be free. The phrase “knowledge is free”, a slogan of Anonymous hackers and their sympathizers, is true in two senses. Not only does “information want to be free”, the origin of the phrase explained by Wired co-founder Kevin Kelly in What Technology Wants (2010), but one can acquire knowledge at zero cost.

If the “transferrability” of individual creativity and peer production “to the realm of physical production” from the “immaterial realm” is a valid observation (p. 204–227), then the economic singularity means one thing clear. “Knowledge is free” shall become “everything is free”.

“Newly emerging forms of manufacturing”, the author indicated, “require far less capital to undertake production. The desktop revolution has reduced the capital outlays required for music, publishing and software by two orders of magnitude; and the newest open-source designs for computerized machine tools are being produced by hardware hackers for a few hundred dollars” (p. 84).

Open source hardware is of course also central to the advocacy in The Homebrew Industrial Revolution, especially as it relates to poorer peripheries of the world-economy. It is through open source hardware libraries of the kind advocated by Vinay Gupta that plans for alternative manufacture as the starting point in an alternative economy for the good of all become feasible.

As I argued in my 2013 Catalyst booklet, not only informational goods will face the scandals of being “leaked” or “pirated” in future. The right generation of 3D printers, robots, atomically-precise manufacturing devices, biotechnology-derived medicines and petrochemicals will all move “at the speed of light” as the father of synthetic biology J. Craig Venter predicted of his own synbio work.

The fuel of an economic singularity, those above creations should be of primary interest in the formation of an alternative economy. They would not only have zero cost and zero waiting times, but they would require zero effort. Simply shared, they must be allowed to raise the living standards of humanity and allow poor countries to leapfrog several stages of development, breaking free of the bonds of exploitation.

One area to be criticized in the book could be a portion in which it reflects negatively on the very creation of railways or other state-imposed infrastructure and standards as a wrong turn in history, because these created an artificial niche for corporations to thrive (p. 5–23). It seems to undermine the book’s remaining thesis that the right turn in history consists of “libertarian and decentralist technologies and organizational forms”. “Network” technologies and organizational forms only exist due to that wave of prior mass production and imposed infrastructure the author claimed to be unnecessary. Without the satellites and thousands of kilometers of cable made in factories and installed by states, any type of “network” organizational form would be a weak proposition and the internet would never have existed.

Arguably, now the standards are set, future technological endeavors that connect and bridge society won’t need new standards imposed from above or vast physical infrastructure subsidized by states. The formation of effective networks itself now produces new mechanisms for devising and imposing standards, ensuring interconnectivity and high living standards should continue to flourish under the type of alternative economy advocated in Carson’s book.

Abolish artificial scarcity, intellectual property, mandatory high overhead and other measures used by states to enforce the privileges of monopoly capitalism, the author tells us (p. 168–170). This way, a more humane world-economy can be engineered, oriented to benefit people and local communities foremost. Everyone in the world may get to work fewer hours while enjoying an improved quality of life, and we can prevent a bleak future in which millions of people are sacrificed to technological unemployment on the altar of profit.

My sociology of knowledge students read Yuval Harari’s bestselling first book, Sapiens, to think about the right frame of reference for understanding the overall trajectory of the human condition. Homo Deus follows the example of Sapiens, using contemporary events to launch into what nowadays is called ‘big history’ but has been also called ‘deep history’ and ‘long history’. Whatever you call it, the orientation sees the human condition as subject to multiple overlapping rhythms of change which generate the sorts of ‘events’ that are the stuff of history lessons. But Harari’s history is nothing like the version you half remember from school.

In school historical events were explained in terms more or less recognizable to the agents involved. In contrast, Harari reaches for accounts that scientifically update the idea of ‘perennial philosophy’. Aldous Huxley popularized this phrase in his quest to seek common patterns of thought in the great world religions which could be leveraged as a global ethic in the aftermath of the Second World War. Harari similarly leverages bits of genetics, ecology, neuroscience and cognitive science to advance a broadly evolutionary narrative. But unlike Darwin’s version, Harari’s points towards the incipient apotheosis of our species; hence, the book’s title.

This invariably means that events are treated as symptoms if not omens of the shape of things to come. Harari’s central thesis is that whereas in the past we cowered in the face of impersonal natural forces beyond our control, nowadays our biggest enemy is the one that faces us in the mirror, which may or may not be able within our control. Thus, the sort of deity into which we are evolving is one whose superhuman powers may well result in self-destruction. Harari’s attitude towards this prospect is one of slightly awestruck bemusement.

Here Harari equivocates where his predecessors dared to distinguish. Writing with the bracing clarity afforded by the Existentialist horizons of the Cold War, cybernetics founder Norbert Wiener declared that humanity’s survival depends on knowing whether what we don’t know is actually trying to hurt us. If so, then any apparent advance in knowledge will always be illusory. As for Harari, he does not seem to see humanity in some never-ending diabolical chess match against an implacable foe, as in The Seventh Seal. Instead he takes refuge in the so-called law of unintended consequences. So while the shape of our ignorance does indeed shift as our knowledge advances, it does so in ways that keep Harari at a comfortable distance from passing judgement on our long term prognosis.

This semi-detachment makes Homo Deus a suave but perhaps not deep read of the human condition. Consider his choice of religious precedents to illustrate that we may be approaching divinity, a thesis with which I am broadly sympathetic. Instead of the Abrahamic God, Harari tends towards the ancient Greek and Hindu deities, who enjoy both superhuman powers and all too human foibles. The implication is that to enhance the one is by no means to diminish the other. If anything, it may simply make the overall result worse than had both our intellects and our passions been weaker. Such an observation, a familiar pretext for comedy, wears well with those who are inclined to read a book like this only once.

One figure who is conspicuous by his absence from Harari’s theology is Faust, the legendary rogue Christian scholar who epitomized the version of Homo Deus at play a hundred years ago in Oswald Spengler’s The Decline of the West. What distinguishes Faustian failings from those of the Greek and Hindu deities is that Faust’s result from his being neither as clever nor as loving as he thought. The theology at work is transcendental, perhaps even Platonic.

In such a world, Harari’s ironic thesis that future humans might possess virtually perfect intellects yet also retain quite undisciplined appetites is a non-starter. If anything, Faust’s undisciplined appetites point to a fundamental intellectual deficiency that prevents him from exercising a ‘rational will’, which is the mark of a truly supreme being. Faust’s sense of his own superiority simply leads him down a path of ever more frustrated and destructive desire. Only the one true God can put him out of his misery in the end.

In contrast, if there is ‘one true God’ in Harari’s theology, it goes by the name of ‘Efficiency’ and its religion is called ‘Dataism’. Efficiency is familiar as the dimension along which technological progress is made. It amounts to discovering how to do more with less. To recall Marshall McLuhan, the ‘less’ is the ‘medium’ and the ‘more’ is the ‘message’. However, the metaphysics of efficiency matters. Are we talking about spending less money, less time and/or less energy?

It is telling that the sort of efficiency which most animates Harari’s account is the conversion of brain power to computer power. To be sure, computers can outperform humans on an increasing range of specialised tasks. Moreover, computers are getting better at integrating the operations of other technologies, each of which also typically replaces one or more human functions. The result is the so-called Internet of Things. But does this mean that the brain is on the verge of becoming redundant?

Those who say yes, most notably the ‘Singularitarians’ whose spiritual home is Silicon Valley, want to translate the brain’s software into a silicon base that will enable it to survive and expand indefinitely in a cosmic Internet of Things. Let’s suppose that such a translation becomes feasible. The energy requirements of such scaled up silicon platforms might still be prohibitive. For all its liabilities and mysteries, the brain remains the most energy efficient medium for encoding and executing intelligence. Indeed, forward facing ecologists might consider investing in a high-tech agronomy dedicated to cultivating neurons to function as organic computers – ‘Stem Cell 2.0’, if you will.

However, Harari does not see this possible future because he remains captive to Silicon Valley’s version of determinism, which prescribes a migration from carbon to silicon for anything worth preserving indefinitely. It is against this backdrop that he flirts with the idea that a computer-based ‘superintelligence’ might eventually find humans surplus to requirements in a rationally organized world. Like other Singularitarians, Harari approaches the matter in the style of a 1950s B-movie fan who sees the normative universe divided between ‘us’ (the humans) and ‘them’ (the non-humans).

The bravest face to put on this intuition is that computers will transition to superintelligence so soon – ‘exponentially’ as the faithful say — that ‘us vs. them’ becomes an operative organizing principle. More likely and messier for Harari is that this process will be dragged out. And during that time Homo sapiens will divide between those who identify with their emerging machine overlords, who are entitled to human-like rights, and those who cling to the new acceptable face of racism, a ‘carbonist’ ideology which would privilege organic life above any silicon-based translations or hybridizations. Maybe Harari will live long enough to write a sequel to Homo Deus to explain how this battle might pan out.

NOTE ON PUBLICATION: Homo Deus is published in September 2016 by Harvil Secker, an imprint of Penguin Random House. Fuller would like to thank The Literary Review for originally commissioning this review. It will appear in a subsequent edition of the magazine and is published here with permission.

I have share my own risks on BMI a while back especially that which is connected (net, cloud, etc.)


Short Bytes: For a moment, forget computer and smartphone malware. There’s even a bigger danger in town in the form of brain malware. By exploiting brain-computer interfaces (BCI) being used in medical and gaming applications, hackers can read your private and sensitive data. Recently, a team of researchers from the University of Washington shed more light on the subject, demanding a policy-oriented regulation on BCIs.

Read more

NASA just announced that any published research funded by the space agency will now be available at no cost, launching a new public web portal that anybody can access.

The free online archive comes in response to a new NASA policy, which requires that any NASA-funded research articles in peer-reviewed journals be publicly accessible within one year of publication.

“At NASA, we are celebrating this opportunity to extend access to our extensive portfolio of scientific and technical publications,” said NASA Deputy Administrator Dava Newman. “Through open access and innovation we invite the global community to join us in exploring Earth, air, and space.”

Read more

Innovation is all the buzz in Asia. Australia, China, Korea, Vietnam, and now lets look at India.

Personally, I believe there is great potential in India for some amazing innovations. Just look at their own historical sites and artifacts, art, etc.; no one can claim creativity, imagination, etc. does not exist. And, not to mention the engineering feats that have been proven by India many times.


India has moved 16 rungs up the global ranking for innovation in 2016, as compared to 2015, but still remains a lowly 66th, well below Malaysia and Vietnam, leave alone China in the middle-income category and far below countries like South Korea and Japan, and other high-income innovation hubs like Switzerland, the US, the UK and Singapore. What can be done to make India a hub of innovation? Improve the quality of education across all levels. A technology policy that incentivises genuine R&D is required. Ease of entry and exit of firms, competition, a vibrant financial sector that allocates capital to new profit potential, a culture of entrepreneurship and an end to failure-shaming would help. The least obvious requirement is political empowerment of the common man.

Close on the heels of the release of the ranking comes the news that India has got one more unicorn, a startup with a valuation in excess of $1billion, with fresh investment in Hike, a messenger app from the Bharti stable, valuing the company at $1.4 billion. This is a welcome development, and testimony to innovation at work in India. However, compared to what WeChat, a Chinese app that brings many functionalities together including payments and messages that expire, Indian innovation looks limited. Huge research and development expenditure by global majors in their units in India has helped raise the country’s ranking in the global index. But this only means Indian brawn working to bring foreigners’ innovation to fruition, for the most part.

Read more

In Greek mythology, the Chimera is a monster that is part lion, part goat and part snake. Far from reality, sure, but the idea of mixing and matching creatures is real — and has ethicists concerned.

That’s because last week, the National Institutes of Health proposed a new policy to allow funding for scientists who are creating chimeras — the non-mythological kind. In genetics, chimeras are organisms formed when human stem cells are combined with tissues of other animals, with the potential for creating human-animal hybrids.

Pablo Ross of the University of California, Davis, inserts human stem cells into a pig embryo as part of experiments to create chimeric embryos.

Read more

Posting for the friends who hasn’t heard about the US funding the new program to grow half human and half animal embryos. Part of the goal is to enable organs to be made available for transplants, etc…


The federal government is planning to lift a moratorium on funding of controversial experiments that use human stem cells to create animal embryos that are partly human.

The National Institutes of Health has unveiled a new policy to permit scientists to get federal money to make the embryos, known as chimeras, under certain carefully monitored conditions.

The NIH imposed a moratorium on funding these experiments in September because they could raise ethical concerns.

Read more