Toggle light / dark theme

Benjamin Franklin FRS FRSA FRSE (January 17, 1706 [O.S. January 6, 1706] – April 17, 1790) was an American polymath and one of the Founding Fathers of the United States. Franklin was a leading writer, printer, political philosopher, politician, Freemason, postmaster, scientist, inventor, humorist, civic activist, statesman, and diplomat. As a scientist, he was a major figure in the American Enlightenment and the history of physics for his discoveries and theories regarding electricity. As an inventor, he is known for the lightning rod, bifocals, and the Franklin stove, among other inventions.[1] He founded many civic organizations, including the Library Company, Philadelphia’s first fire department,[2] and the University of Pennsylvania.[3]

Franklin earned the title of “The First American” for his early and indefatigable campaigning for colonial unity, initially as an author and spokesman in London for several colonies. As the first United States ambassador to France, he exemplified the emerging American nation.[4] Franklin was foundational in defining the American ethos as a marriage of the practical values of thrift, hard work, education, community spirit, self-governing institutions, and opposition to authoritarianism both political and religious, with the scientific and tolerant values of the Enlightenment. In the words of historian Henry Steele Commager, “In a Franklin could be merged the virtues of Puritanism without its defects, the illumination of the Enlightenment without its heat.”[5] To Walter Isaacson, this makes Franklin “the most accomplished American of his age and the most influential in inventing the type of society America would become.

If you’re a fan of science fiction, chances are you encountered a few franchises where humanity has spread throughout the known Universe. The ships that allow them to do this, maybe they use a warp drive, maybe they “fold space,” maybe have a faster-than-light (FTL) or “jump” drive.

It’s a cool idea, the thought of “going interstellar!” Unfortunately, the immutable laws of physics tell us that this is simply not possible.

However, the physics that govern our Universe do allow for travel that is close to the speed of light, even though getting to that speed would require a tremendous amount of energy.

O,.o earth to Mars 12.5 minutes.


A NASA scientist has cooked up plans for a bonkers new rocket engine that can reach close to the speed of light – without using any fuel.

Travelling at such speeds, the theoretical machine could carry astronauts to Mars in less than 13 minutes, or to the Moon in just over a second.

However, the real purpose of the so-called “helical engine” would be to travel to distant stars far quicker than any existing tech, according to NASA engineer Dr David Burns.

:ooo

Astronomers have seen what appears to the first light ever detected from a black hole merger.


When two black holes spiral around each other and ultimately collide, they send out ripples in space and time called gravitational waves. Because black holes do not give off light, these events are not expected to shine with any light waves, or electromagnetic radiation. Graduate Center, CUNY astrophysicists K. E. Saavik Ford and Barry McKernan have posited ways in which a black hole merger might explode with light. Now, for the first time, astronomers have seen evidence of one of these light-producing scenarios. Their findings are available in the current issues of Physical Review Letters.

A team consisting of scientists from The Graduate Center, CUNY; Caltech’s Zwicky Transient Facility (ZTF); Borough of Manhattan Community College (BMCC); and The American Museum of Natural History (AMNH) spotted what appears to be a flare of light from a pair of coalescing black holes. The event (called S190521g) was first identified by the National Science Foundation’s (NSF) Laser Interferometer Gravitational-wave Observatory (LIGO) and the European Virgo detector on May 21, 2019. As the black holes merged, jiggling space and time, they sent out gravitational waves. Shortly thereafter, scientists at ZTF — which is located at the Palomar Observatory near San Diego — reviewed their recordings of the same the event and spotted what may be a flare of light coming from the coalescing black holes.

“At the center of most galaxies lurks a supermassive black hole. It’s surrounded by a swarm of stars and dead stars, including black holes,” said study coauthor Ford, a professor with the Graduate Center, BMCC and AMNH. “These objects swarm like angry bees around the monstrous queen bee at the center. They can briefly find gravitational partners and pair up but usually lose their partners quickly to the mad dance. But in a supermassive black hole’s disk, the flowing gas converts the mosh pit of the swarm to a classical minuet, organizing the black holes so they can pair up,” she says.

R Bamford 1, K J Gibson 2, A J Thornton 2, J Bradford 1, R Bingham 1,6, L Gargate 1,3, L O Silva 3, R A Fonseca 3, M Hapgood 1, C Norberg 4, T Todd 5 and R Stamper 1

Published 4 November 2008 • 2008 IOP Publishing Ltd Plasma Physics and Controlled Fusion, Volume 50, Number

Combing through historical seismic data, researchers using a machine learning model have unearthed distinct statistical features marking the formative stage of slow-slip ruptures in the earth’s crust months before tremor or GPS data detected a slip in the tectonic plates. Given the similarity between slow-slip events and classic earthquakes, these distinct signatures may help geophysicists understand the timing of the devastating faster quakes as well.

“The found that, close to the end of the slow slip cycle, a snapshot of the data is imprinted with fundamental information regarding the upcoming failure of the system,” said Claudia Hulbert, a computational geophysicist at ENS and the Los Alamos National Laboratory and lead author of the study, published today in Nature Communications. “Our results suggest that slow-slip rupture may well be predictable, and because slow slip events have a lot in common with earthquakes, may provide an easier way to study the fundamental physics of earth rupture.”

Slow-slip events are earthquakes that gently rattle the ground for days, months, or even years, do not radiate large-amplitude seismic waves, and often go unnoticed by the average person. The classic quakes most people are familiar with rupture the ground in minutes. In a given area they also happen less frequently, making the bigger quakes harder to study with the data-hungry machine learning techniques.

A new study makes a compelling case for the development of “NEMO”—a new observatory in Australia that could deliver on some of the most exciting gravitational-wave science next-generation detectors have to offer, but at a fraction of the cost.

The study, co-authored by the ARC Center of Excellence for Gravitational Wave Discovery (OzGrav), coincides with an Astronomy Decadal Plan mid-term review by Australian Academy of Sciences where “NEMO” is identified as a priority goal.

“Gravitational-wave astronomy is reshaping our understanding of the Universe,” said one of the study’s lead authors OzGrav Chief Investigator Paul Lasky, from Monash University.

#DigitalPresentism #DTheoryofTime #TemporalMechanics


Temporal philosophy is a fascinating but eerily difficult topic. Correctly answering the philosophical questions and paradoxes of time paves the way to unlocking one of the last remaining mysteries of mind since our perception of time and consciousness, as you know, are simply inseparable. A new theory of time, Digital Presentism, comes from the triangulation of temporal physics, digital physics and experiential realism. This essay addresses the flaming questions in philosophy of time: “Is time fundamental or emergent?”, “How does time exist, if at all?”, “How can we update the current epistemic status of temporal ontology?” For starters, let’s recap what we’ve learned so far about physics of time. Here’s a quick summary: in Time Series essays, we dissected the nature of time through the prism of these 7 common misconceptions:

Female #Astrophysicist Helped Build 1st #AtomicBomb

Today marks 75 years since the 1st use of #nuclear weapons in #war-time, when the #US dropped the 1st atomic bomb on #Hiroshima, #Japan. One of the very few female #scientists who worked on the #ManhattanProject went on to become a researcher in high-energy #physics, #astrophysics, #cosmology, & diatomic molecular #spectroscopy.

MORE INFO: CLICK ON #IMAGE OR LINK

LIKE THIS POST? PLEASE SHARE!

Link.


Photograph of Leona Woods Marshall at the University of Chicago on 1946 December 2.

(Image Sources: Wikipedia.org, By Argonne National Laboratory — Leona Woods Marshall Libby, Uranium People, pp. 182-183, Public Domain, https://commons.wikimedia.org/w/index.php?curid=25600002)