Toggle light / dark theme

It’s like something out of Stranger Things, but with fewer Demogorgons and less of the sinister darkness: physicists have flipped reality on its head, creating their own ‘upside down’ by getting small boats to float underneath a levitating liquid.

Seeing it in action, you would think you were watching some kind of sci-fi movie effect, but it’s all to do with the forces of vertical vibration. It’s already been established that some carefully calibrated vertical shaking can keep liquid suspended inside a container, and here the team has taken advantage of the phenomenon.

In this new study, not only do they achieve the suspension, but demonstrate that it’s possible to create a similar balance of forces in the lower half of the chamber as in the upper half: when put on the upside down surface of a viscous liquid, a small model boat or ball will stay in place.

Giant balloons launched into the stratosphere to beam internet service to Earth have helped scientists measure tiny ripples in our upper atmosphere, uncovering patterns that could improve weather forecasts and climate models.

The ripples, known as waves or buoyancy waves, emerge when blobs of air are forced upward and then pulled down by gravity. Imagine a parcel of air that rushes over mountains, plunges toward cool valleys, shuttles across land and sea and ricochets off growing storms, bobbing up and down between layers of stable atmosphere in a great tug of war between buoyancy and gravity. A single wave can travel for thousands of miles, carrying momentum and heat along the way.

Although lesser known than —undulations in the fabric of space-time— are ubiquitous and powerful, said Stanford University atmospheric scientist Aditi Sheshadri, senior author of a new study detailing changes in high-frequency gravity waves across seasons and latitudes. They cause some of the turbulence felt on airplanes flying in and have a strong influence on how storms play out at ground level.

“Gravitational waves from what could be the most massive black hole merger yet has been detected by researchers at the Laser Interferometer Gravitational-wave Observatory (LIGO) and its discovery is also raising questions about how massive black holes are formed.

When scientists made the first direct detection of gravitational waves from a binary black hole merger in February 2016, not only did they prove Einstein right, they also discovered another curious quirk; the audibl… See More.


The detection of the heaviest black hole merger to date is also the first clear detection of an ” intermediate-mass” black hole.

Scientists suggest that a counter-intuitive, hypothetical species of black holes may negate the standard model of cosmology, where dark energy is an inherent and constant property of spacetime that will result in an eventual cold death of the universe. “It’s the big elephant in the room,” says Claudia de Rham, a theoretical physicist at Imperial College London about dark energy, the mysterious, elusive phenomena that pushes the cosmos to expand so rapidly and which is estimated to account for 70% of the contents of the universe. “It’s very frustrating.”

Generic Objects of Dark Energy

Astronomers have known for two decades that the expansion of the universe is accelerating, but the physics of this expansion remains a mystery. In 1966, Erast Gliner, a young physicist at the Ioffe Physico-Technical Institute in Leningrad, proposed an alternative hypothesis that very large stars should collapse into what could be called Generic Objects of Dark Energy (GEODEs). These appear to be black holes when viewed from the outside but, unlike black holes, they contain dark energy instead of a singularity.

When searching for signs of life in the Universe, we tend to look for very specific things, based on what we know: a planet like Earth, in orbit around a star, and at a distance that allows liquid surface water. But there could, conceivably, be other forms of life out there that look like nothing that we have ever imagined before.

Just as we have extremophiles here on Earth — organisms that live in the most extreme and seemingly inhospitable environments the planet has to offer — so too could there be extremophiles out there in the wider Universe.

For instance, species that can form, evolve, and thrive in the interiors of stars. According to new research by physicists Luis Anchordoqui and Eugene Chudnovsky of The City University of New York, such a thing is indeed — hypothetically, at least — possible.

Black holes are celestial objects with such massive gravity that not even light can escape their clutches once it crosses the event horizon, or point-of-no-return. The event horizons of black holes lock secrets deep within them — secrets that could completely revolutionize our understanding of physics.

Unfortunately, for decades many scientists thought whatever information falls into a black hole might be lost forever. But new research suggests that ripples in space-time, or gravitational waves may carry a faint whisper of this hidden information by revealing the presence of wispy “hairs” on a black hole’s surface.


Hair may record the information swallowed by the gravitational monsters.

IAIFI will advance physics knowledge — from the smallest building blocks of nature to the largest structures in the universe — and galvanize AI research innovation.

The U.S. National Science Foundation (NSF) announced last week an investment of more than $100 million to establish five artificial intelligence (AI) institutes, each receiving roughly $20 million over five years. One of these, the NSF AI Institute for Artificial Intelligence and Fundamental Interactions (IAIFI), will be led by MIT ’s Laboratory for Nuclear Science (LNS) and become the intellectual home of more than 25 physics and AI senior researchers at MIT and Harvard, Northeastern, and Tufts universities.

By merging research in physics and AI, the IAIFI seeks to tackle some of the most challenging problems in physics, including precision calculations of the structure of matter, gravitational-wave detection of merging black holes, and the extraction of new physical laws from noisy data.

For the first time, pressure over 100 times that found in Earth’s core has been generated in a lab, setting a new record.

Using the highest-energy laser system in the world, physicists briefly subjected solid hydrocarbon samples to pressures up to 450 megabars, meaning 450 million times Earth’s atmospheric pressure at sea level.

That’s equivalent to the pressures found in the carbon-dominated envelopes of a rare type of white dwarf star — some of the densest objects in the known Universe. It could help us to better understand the effect those pressures have on changes in the stars’ brightness.

Abstract: Advances in high speed imaging techniques have opened new possibilities for capturing ultrafast phenomena such as light propagation in air or through media. Capturing light-in-flight in 3-dimensional xyt-space has been reported based on various types of imaging systems, whereas reconstruction of light-in-flight information in the fourth dimension z has been a challenge. We demonstrate the first 4-dimensional light-in-flight imaging based on the observation of a superluminal motion captured by a new time-gated megapixel single-photon avalanche diode camera. A high resolution light-in-flight video is generated with no laser scanning, camera translation, interpolation, nor dark noise subtraction. A machine learning technique is applied to analyze the measured spatio-temporal data set. A theoretical formula is introduced to perform least-square regression, and extra-dimensional information is recovered without prior knowledge. The algorithm relies on the mathematical formulation equivalent to the superluminal motion in astrophysics, which is scaled by a factor of a quadrillionth. The reconstructed light-in-flight trajectory shows a good agreement with the actual geometry of the light path. Our approach could potentially provide novel functionalities to high speed imaging applications such as non-line-of-sight imaging and time-resolved optical tomography.