Toggle light / dark theme

#sweet!


Electrons which act like slow-pouring honey have been observed for the first time in graphene, prompting a new approach to fundamental physics.

Electrons are known to move through metals like bullets being reflected only by imperfections, but in graphene they move like in a very , University of Manchester researchers have found.

The possibility of a highly viscous flow of electrons in metals was predicted several decades ago but despite numerous efforts never observed, until now as reported in the journal Science.

Read more

The 5 Dimensional Black Hole could break the theory of relativity: Simulation suggests strange rings with ‘ultragravity’ that defy physics may exist.

Follow us: @MailOnline on Twitter | DailyMail on Facebook.


Researchers from the University of Cambridge and Queen Mary University of London made the discovery after simulating a black hole shaped like a very thin ring using computer models.

Read more

A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others.

Read more

But now it seems that collision may have been followed by a bright burst of gamma rays. NASA’s Fermi gamma-ray space telescope detected such an eruption just 0.4 seconds after LIGO’s gravitational waves arrived at Earth. It’s not clear whether the same event triggered both signals, but the Fermi team calculated that the probability of a coincidence was just 0.0022.

The problem is that no one expected such a bright gamma-ray burst to accompany a black-hole merger. Coalescing black holes orbit each other in a cosmic do-si-do, clearing out a region of empty space. According to models of gamma-ray bursts, isolated black holes can’t ignite them.

Strange signal

“Everything smells like a short gamma-ray burst in our signal,” says Valerie Connaughton of the Fermi team. “And that’s a real problem in a way – you don’t expect this signal from merging black holes.”

Read more

Physicists working with a powerful observatory on Earth announced Thursday that they have finally detected ripples in space and time created by two colliding black holes, confirming a prediction made by Albert Einstein 100 years ago.

These ripples in the fabric of space-time, called gravitational waves, were created by the merger of two massive black holes 1.3 billion years ago. The Laser Interferometer Gravitational-Wave Observatory (LIGO) on Earth detected them on Sept. 14, 2015, and scientists evaluated their findings and put them through the peer review process before publicly disclosing the landmark discovery today.

SEE ALSO: Einstein was right: Scientists detect gravitational waves for the first time.

Read more

Since Albert Einstein first predicted their existence a century ago, physicists have been on the hunt for gravitational waves, ripples in the fabric of spacetime. That hunt is now over. Gravitational waves exist, and we’ve found them.

That’s according to researchers at the Laser Interferometer Gravitational Wave Observatory (LIGO), who have been holed up for weeks, working round-the-clock to confirm that the very first direct detection of gravitational waves is the real deal. False signals have been detected before, and even though the rumors first reported by Gizmodo have been flying for a month, the LIGO team wanted to be absolutely certain before making an official announcement.

That announcement has just come. Gravitational waves were observed on September 14th, 2015, at 5:51 am ET by both of the LIGO detectors, located in Livingston, Louisiana, and Hanford, Washington. The source? A supermassive black hole collision that took place 1.3 billion years ago. When it occurred, about three times the mass of the sun was converted to energy in a fraction of a second.

Read more