The Direct Fusion Drive (DFD) concept provides game-changing propulsion and power capabilities that would revolutionize interplanetary travel. DFD is based on the Princeton Field-Reversed Configuration (PFRC) fusion reactor under development at the Princeton Plasma Physics Laboratory. The mission context we are proposing is delivery of a Pluto orbiter with a lander. The key objective of the proposal is to determine the feasibility of the proposed Pluto spacecraft using improved engine models. DFD provides high thrust to allow for reasonable transit times to Pluto while delivering substantial mass to orbit: 1000 kg delivered in 4 to 6 years. Since DFD provides power as well as propulsion in one integrated device, it will also provide as much as 2 MW of power to the payloads upon arrival. This enables high-bandwidth communication, powering of the lander from orbit, and radically expanded options for instrument design. The data acquired by New Horizons’ recent Pluto flyby is just a tiny fraction of the scientific data that could be generated from an orbiter and lander. We have evaluated the Pluto mission concept using the Lambert algorithm for maneuvers with rough estimates of the engine thrust and power. The acceleration times are sufficiently short for the Lambert approximation, i.e. impulsive burns, to have some validity. We have used fusion scaling laws to estimate the total mission mass and show that it would fit within the envelope of a Delta IV Heavy launch vehicle. Estimates of the amount of Helium 3 required to fuel the reactor are within available terrestrial stores.
Category: physics
The human brain was initially used for basic survival tasks, such as staying safe and hunting and gathering. Yet, 200,000 years later, the same human brain is able to learn abstract concepts, like momentum, energy and gravity, which have only been formally defined in the last few centuries.
New research from Carnegie Mellon University has now uncovered how the brain is able to acquire brand new types of ideas. Published in Psychological Science, scientists Robert Mason and Marcel Just used neural-decoding techniques developed at CMU to identify specific physics concepts that advanced students recalled when prompted. The brain activation patterns while thinking about the physics concepts indicated that all of the students’ brains used the ancient brain systems the same way, and the patterns revealed how the new knowledge was formed — by repurposing existing neural systems.
The findings could be used to improve science instruction.
Travel to the past is probably impossible. But to the future? That’s a different story. Cathal O’Connell considers the feasibility of physics.
In 2009 the British physicist Stephen Hawking held a party for time travellers — the twist was he sent out the invites a year later. (No guests showed up).
For info about divesting from nuclear weapons companies, go to http://responsibleinvest.org/
Thanks to the Future of Life Institute for helping support this video http://www.futureoflife.org (in particular, thanks to Max Tegmark for guest narrating and Meia Chita-Tegmark for her feedback)
And thanks to everyone who supports MinutePhysics on Patreon! http://www.patreon.com/minutephysics
Link to Patreon supporters here: http://www.minutephysics.com/supporters.html
Music by Nathaniel Schroeder, http://www.soundcloud.com/drschroeder
References
The EMPT thruster, funded by NASA, is a 1 kW-class RMF thruster, operates on the same physics principles as the ELF thruster. This device, less than 4 inches in diameter, has proven that pulsed inductive technolgoies can be succesfully miniaturized. Indeed, this thruster has demonstrated operation from 0.5 to 5 Joules, as well as the first pulsed inductive steady state operation. The EMPT has demonstrated greater than 1E8 continuous plasma discharges.
Are parallel universes real?
Right now there might be a whole other universe where instead of brown hair you have red hair, or a universe where you’re a classical pianist, not an engineer. In fact, an infinite number of versions of you may exist in an infinite number of other universes.The idea sounds like science fiction, but multiverse theories — especially those that are actually testable — are gaining traction among physicists. Here are three of the most compelling theories:
If the universe is infinite, multiple universes probably exist.
If the universe is infinite, like many believe it is, then there must be huge patches of the universe that are simply too distant for us to see.