Even in the strange world of open quantum systems, the arrow of time points steadily forward—most of the time. New experiments conducted at Washington University in St. Louis compare the forward and reverse trajectories of superconducting circuits called qubits, and find that they follow the second law of thermodynamics. The research is published July 9 in the journal Physical Review Letters.
“When you look at a quantum system, the act of measuring usually changes the way it behaves,” said Kater Murch, associate professor of physics in Arts & Sciences. “Imagine shining light on a small particle. The photons end up pushing it around and there is a dynamic associated with the measurement process alone.
”We wanted to find out if these dynamics have anything to do with the arrow of time—the fact that entropy tends to increase as time goes on.”
A trio of researchers affiliated with several institutions in the U.S. and Canada has found evidence that suggests nuclear material beneath the surface of neutron stars may be the strongest material in the universe. In their paper published in the journal Physical Review Letters, M. E. Caplan, A. Schneider, and C. J. Horowitz describe their neutron star simulation and what it showed.
Prior research has shown that when stars reach a certain age, they explode and collapse into a mass of neutrons; hence the name neutron star. And because they lose their neutrinos, neutron stars become extremely densely packed. Prior research has also found evidence that suggests the surface of such stars is so dense that the material would be incredibly strong. In this new effort, the researchers report evidence suggesting that the material just below the surface is even stronger.
Astrophysicists have theorized that as a neutron star settles into its new configuration, densely packed neutrons are pushed and pulled in different ways, resulting in formation of various shapes below the surface. Many of the theorized shapes take on the names of pasta, because of the similarities. Some have been named gnocchi, for example, others spaghetti or lasagna. Caplan, Schneider and Horowitz wondered about the density of these formations—would they be denser and thus stronger even than material on the crust? To find out, they created some computer simulations.
Imagine a world where everything is exactly the same as this one but no one knows of its existence, even though it could be staring you right in the face. These are called mirror universes — a parallel world in a different time space. While this prospect may seem a bit fetched to many, Leah Broussard believes that these parallel universes are actually very real. In fact, she, along with her colleagues at Oak Ridge National Laboratory in Tennessee, is on the hunt for a mirror universe and plans on opening portals to them.
Broussard is attempting to open a portal to a parallel universe by, what she calls “oscillation” which would eventually lead her to mirror matter. To conduct these experiments during the upcoming summer, Broussard will send a beam of subatomic particles down a 50-foot tunnel, past a powerful magnet, and into an impenetrable wall.
So what’s the point of that? Well, if the setup is just right, some of those particles will transform into mirror-image versions of themselves, allowing them to tunnel right through the wall. If it works, this would be the first proof of a mirror universe. The whole experiment will only take around a day but analyzing the data will take many weeks afterward. Either way, it won’t be long before the results are published.
We know that the rule “nothing lasts forever” holds true for everything. But the world of quantum particles doesn’t always seem to follow the rules.
In the latest findings, scientists have observed that quasiparticles in quantum systems could be virtually immortal. These particles can regenerate themselves after they have decayed — and this can have a significant impact on the future of quantum computing and humanity itself.
This finding stands up directly against the second law of thermodynamics which basically says that things can only break down and not reconstruct again. However, these quantum particle fields can reconstruct themselves after decaying – just like the Phoenix rises from its ashes in Greek mythology.
From returning to the Moon to establishing outposts on Mars, NASA has the need for more power than ever before. Could nuclear fission be the solution they’ve been searching for?
Watch more Focal Point! | https://bit.ly/2J9b9LC
Demonstration Proves Nuclear Fission System Can Provide Space Exploration Power https://www.nasa.gov/press-release/demonstration-proves-nuclear-fission-system-can-provide-space-exploration-power “NASA and the Department of Energy’s National Nuclear Security Administration (NNSA) have successfully demonstrated a new nuclear reactor power system that could enable long-duration crewed missions to the Moon, Mars and destinations beyond.”
NASA to Test Fission Power for Future Mars Colony https://www.space.com/37348-nasa-fission-power-mars-colony.html “As NASA makes plans to one day send humans to Mars, one of the key technical gaps the agency is working to fill is how to provide enough power on the Red Planet’s surface for fuel production, habitats and other equipment. One option: small nuclear fission reactors, which work by splitting uranium atoms to generate heat, which is then converted into electric power.”
Ideas for new NASA mission can now include spacecraft powered by plutonium https://www.theverge.com/2018/3/19/17138924/nasa-discovery-program-radioisotope-thermoelectric-generators-plutonium-238 “Discovery proposals can now incorporate a type of power system known as a radioisotope thermoelectric generators, or RTGs. These generators are powered by radioactive material — a type of metal called plutonium-238.”
Sign Up For The Seeker Newsletter Here — http://bit.ly/1UO1PxI ____________________ Seeker inspires us to see the world through the lens of science and evokes a sense of curiosity, optimism and adventure.
About 80% of all the matter in the cosmos is of a form completely unknown to current physics. We call it dark matter, because as best we can tell it’s…dark. Experiments around the world are attempting to capture a stray dark matter particle in hopes of understanding it, but so far they have turned up empty.
Recently, a team of theorists has proposed a new way to hunt for dark matter using weird “particles” called magnons, a name I did not just make up. These tiny ripples could lure even a fleeting, lightweight dark matter particle out of hiding, those theorists say. [The 11 Biggest Unanswered Questions About Dark Matter]
We know all sorts of things about dark matter, with the notable exception of what it is.
In the summer of 1935, the physicists Albert Einstein and Erwin Schrödinger engaged in a rich, multifaceted and sometimes fretful correspondence about the implications of the new theory of quantum mechanics.
The focus of their worry was what Schrödinger later dubbed entanglement: the inability to describe two quantum systems or particles independently, after they have interacted.
Until his death, Einstein remained convinced that entanglement showed how quantum mechanics was incomplete. Schrödinger thought that entanglement was the defining feature of the new physics, but this didn’t mean that he accepted it lightly.
Photons normally do not interact with each other, but researchers found that they can get particles of light to interact with each other like matter does. They produced particles called Floquet polaritons.
Photons — those fundamental particles of light — have a slew of interesting properties, including the fact they don’t tend to crash into one another. That hasn’t stopped physicists from trying, though.
University of Chicago physicists have now come up with a new, highly flexible way to make photons behave more like the particles that make up matter. It might not give us lightsabers, but making photons collide could still lead to some fantastic technologies.
The trick to getting particles of light — which have no mass — to acknowledge one another’s existence is to have them meet in the quiet confines of an atom, and combine their properties with those of an electron.