Toggle light / dark theme

In a multiyear effort involving three national laboratories from across the United States, researchers have successfully built and tested a powerful new magnet based on an advanced superconducting material. The eight-ton device—about as long as a semi-truck trailer—set a record for the highest field strength ever recorded for an accelerator focusing magnet and raises the standard for magnets operating in high-energy particle colliders.

The Department of Energy’s Fermilab, Brookhaven National Laboratory and Lawrence Berkeley National Laboratory designed, built and tested the new magnet, one of 16 they will provide for operation in the High-Luminosity Large Hadron Collider at CERN laboratory in Europe. The 16 magnets, along with another eight produced by CERN, serve as “optics” for charged particles: They will focus beams of protons into a tiny, infinitesimal spot as they approach collision inside two different particle detectors.

The ingredient that sets these U.S.-produced magnets apart is niobium-tin—a superconducting material that produces strong magnetic fields. These will be the first niobium-tin quadrupole magnets ever to operate in a particle accelerator.

To understand the behavior of quantum particles, imagine a pinball game—but rather than one metal ball, there are billions or more, all ricocheting off each other and their surroundings.

Physicists have long tried to study this interactive system of strongly correlated particles, which could help illuminate elusive phenomena like and magnetism.

One classic method is to create a simplified model that can capture the essence of these particle interactions. In 1963, physicists Martin Gutzwiller, Junjiro Kanamori and John Hubbard—working separately—proposed what came to be called the Hubbard model, which describes the essential physics of many interacting quantum particles. The solution to the model, however, only exists in one dimension. For decades, physicists have tried to realize the Hubbard model in two or three dimensions by creating that can mimic it.

An advanced communications system comprising an emitter and an improved receiver (detector) utilizing modulated beams of neutrino and antineutrino waves as information carriers between the emitter and the receiver. of modulated neutrino and antineutrino beams in the emitter is achieved by a laser-like medium, while detection and demodulation of the neutrino and antineutrino beams is accomplished by a second laser-like medium which registers the flux (or of modulated neutrinos and antineutrinos passing there-through by means of resonant stimulated deexcitation of lasable excited states. In addition to the information transmission utilization, the neutrino emitter and receiver (detector) system may also be employed to gather information by the probing of internal earth structures. Such structures cause measurable refractions and retardations of the propagated pulses of monochromatic neutrino waves traveling through the earth between the emitter and receiver (detector), at certain predetermined neutrino

I think these can be fought with current technology such as quantum radar even other higher level technology. It can also be hacked with quantum radar or neutrino beams.


Know colloquially as the “Black Holes” by the U.S. Navy, the Improved-Kilo-class of submarines are quite deadly — and could turn the balance of power in the South China Sea in China’s favor.

Astronomers know that much about how neutron stars are born. Yet exactly what happens afterwards, inside these ultra-dense cores, remains a mystery. Some researchers theorize that neutrons might dominate all the way down to the centre. Others hypothesize that the incredible pressure compacts the material into more exotic particles or states that squish and deform in unusual ways.

Now, after decades of speculation, researchers are getting closer to solving the enigma, in part thanks to an instrument on the International Space Station called the Neutron Star Interior Composition Explorer (NICER).


These stellar remnants are some of the Universe’s most enigmatic objects — and they are finally starting to give up their secrets.

A simple tractor beam can pull them away like a higgs boson tractor beam.


Too bad they are likely uninhabitable.

Maybe could use a higgs field to deflect it or aim it away or use a higgs laser to destroy the black hole.


Astronomers have discovered the existence of a supermassive black hole that looks to be the oldest and most distant of its kind we’ve ever encountered – and it just happens to be aiming its bright particle beam directly at Earth.

The newly found supermassive black hole – called PSO J030947.49+271757.31 – is the most distant blazar ever observed, researchers say. That conclusion is based on the wavelength signature of the object’s redshift, a phenomenon scientists can use to measure the distance of light-emitting sources in space.

Blazars are supermassive black holes that lie at the heart of active galactic nuclei: central regions of galaxies bursting forth with high levels of luminosity and electromagnetic emissions, thought to occur due to the intense heat generated by particles of gas and dust swirling in the accretion disks of supermassive black holes.