Toggle light / dark theme

Fusion energy has the potential to supply safe, clean, and nearly limitless power. Although fusion reactions can occur for light nuclei weighting less than iron, most elements will not fuse unless they are in the interior of a star. To create burning plasmas in experimental fusion power reactors such as tokamaks and stellarators, scientists seek a fuel that is relatively easy to produce, store, and bring to fusion. The current best bet for fusion reactors is deuterium-tritium fuel. This fuel reaches fusion conditions at lower temperatures compared to other elements and releases more energy than other fusion reactions.

Deuterium and tritium are isotopes of hydrogen, the most abundant element in the universe. Whereas all isotopes of hydrogen have one proton, deuterium also has one neutron and tritium has two neutrons, so their ion masses are heavier than protium, the isotope of hydrogen with no neutrons. When deuterium and tritium fuse, they create a helium nucleus, which has two protons and two neutrons. The reaction releases an energetic neutron. Fusion power plants would convert energy released from fusion reactions into electricity to power our homes, businesses, and other needs.

Fortunately, deuterium is common. About 1 out of every 5000 hydrogen atoms in seawater is in the form of deuterium. This means our oceans contain many tons of deuterium. When fusion power becomes a reality, just one gallon of seawater could produce as much energy as 300 gallons of gasoline.

Circa 2015 In theory this big bang laser could eventually create complex matter but would need to be pocket-size as I want it on a smartphone to make a replicator so I can make fruit or food in space 😀


The Institute of Laser Engineering (ILE), Osaka University, has succeeded to reinforce the Petawatt laser “LFEX” to deliver up to 2000 trillion watts in the duration of one trillionth of one second (this corresponds to 1000 times the integrated electric power consumed in the world). By using this high-power laser, it is now possible to generate all of the high-energy quantum beams (electrons, ions, gamma ray, neutron, positron). Owing to such quantum beams with large current, we can make a big step forward not only for creating new fundamental technologies such as medical applications and non-destructive inspection of social infrastructures to contribute to our future life of longevity, safety, and security, but also for realization of laser fusion energy triggered by fast ignition.

Background and output of research

Petawatt lasers are used for study of basic science, generating such high-energy quantum beams as neutrons and ions, but only a few facilities in the world have Petawatt laser. So far, Petawatt lasers in the world have had relatively a small output (to a few tens of joules). ILE has achieved the world’s largest laser output of dozens of times those at other world-class lasers facilities (1000 joules or more).

Russia is planning to send a nuclear-powered spacecraft to the grand gas giant of the Solar System, Jupiter, in 2030.

Roscosmos, Russia’s federal space agency, announced the plan for the mammoth 50-month journey last week. The journey will take it on a mini tour of the Solar System, taking pit stops around the Moon and Venus, dropping off spacecraft along its way, before heading on to Jupiter.

More specifically, a “space tug” with a nuclear-based transport and energy module dubbed Zeus will head towards the Moon where a spacecraft will separate from it. It will then pass by Venus to perform a gravity assist maneuver and drop off another spacecraft, before venturing towards Jupiter and one of its satellites.

As the number of qubits in early quantum computers increases, their creators are opening up access via the cloud. IBM has its IBM Q network, for instance, while Microsoft has integrated quantum devices into its Azure cloud-computing platform. By combining these platforms with quantum-inspired optimisation algorithms and variable quantum algorithms, researchers could start to see some early benefits of quantum computing in the fields of chemistry and biology within the next few years. In time, Google’s Sergio Boixo hopes that quantum computers will be able to tackle some of the existential crises facing our planet. “Climate change is an energy problem – energy is a physical, chemical process,” he says.

“Maybe if we build the tools that allow the simulations to be done, we can construct a new industrial revolution that will hopefully be a more efficient use of energy.” But eventually, the area where quantum computers might have the biggest impact is in quantum physics itself.

The Large Hadron Collider, the world’s largest particle accelerator, collects about 300 gigabytes of data a second as it smashes protons together to try and unlock the fundamental secrets of the universe. To analyse it requires huge amounts of computing power – right now it’s split across 170 data centres in 42 countries. Some scientists at CERN – the European Organisation for Nuclear Research – hope quantum computers could help speed up the analysis of data by enabling them to run more accurate simulations before conducting real-world tests. They’re starting to develop algorithms and models that will help them harness the power of quantum computers when the devices get good enough to help.

Canada’s General Fusion plans to start testing a $400 million pilot facility outside London by 2025.


A nuclear fusion startup backed by billionaire Jeff Bezos will build its first pilot power plant outside of London, potentially accelerating a new way of generating clean energy.

Canada’s General Fusion Inc. is one of about two dozen startups trying to harness the power that makes stars shine. Rather than splitting atoms like in traditional fission reactors, fusion plants seek to bind them together at temperatures 10 times hotter than the sun. Doing so releases huge quantities of carbon-free energy with no atomic waste.

Here’s the secret to the self-sustaining tokamak concept.


Could the future of nuclear fusion be a much smaller, self-sustaining tokamak reactor? Researchers at the General Atomics DIII-D National Fusion Facility, the largest nuclear fusion research facility in the U.S., think so. The secret is the pressurized plasma.

The scientists from DIII-D have designed a full “compact nuclear fusion plant” concept and detailed the plans in a new paper in Nuclear Fusion. In simulations, their 8-meter-wide pressurized plasma fusion concept is powerful enough to generate 200 megawatts (MW) of net electricity after the energy cost of the fusion itself.

Hopefully it isn’t too bad.

😅


One of the companies involved in a new nuclear reactor at Taishan in Guangdong, China, has written to the US government warning of an “imminent radiological threat” at the plant. The memo from French firm Framatome to the US Department of Energy, first reported by CNN, said Chinese authorities were raising acceptable radiation limits around the power station, to avoid shutting the reactor down. How serious is the issue, and should you be worried?

Do we know what’s causing the problem?

Framatome parent firm EDF, which has a 30 per cent stake in the company that owns the plant, said yesterday that the problem appears to be an issue with one or more of the fuel rods. It appears there is a potential hole in the casing of the fuel rods, which contain the uranium used to create a fission reaction. In a statement, EDF said there had been an “increase in the concentration of certain noble gases in the primary circuit” in reactor number one at the power station. The primary circuit is the part of the plant that transfers heat from the reactor to water, generating steam and producing electricity. The noble gases include krypton and xenon.

After a decade of design and fabrication, General Atomics is ready to ship the first module of the Central Solenoid, the world’s most powerful magnet. It will become a central component of ITER, a machine that replicates the fusion power of the Sun. ITER is being built in southern France by 35 partner countries.

ITER’s mission is to prove energy from hydrogen fusion can be created and controlled on earth. Fusion energy is carbon-free, safe, and economic. The materials to power society with hydrogen fusion for millions of years are readily abundant.

Despite the challenges of Covid-19, ITER is almost 75 percent built. For the past 15 months, massive first-of-a-kind components have begun to arrive in France from three continents. When assembled together, they will make up the ITER Tokamak, a “sun on earth” to demonstrate fusion at industrial scale.

For a nuclear fusion project that will replicate reactions in the SUN to create ‘the ultimate clean energy source…


The world’s largest magnet, a decade in the making, is ready to be shipped to France where it will form the centrepiece of a project to replicate the power of the sun.

This will form a central part of ITER, a £17 billion ($23.95 billion) machine that creates fusion energy on Earth, built in France by 35 partner countries to find a ‘true renewable power’.

The hydrogen fusion system is a test to prove the technology can work and that power can be created and controlled to provide carbon-free safe electricity.