Toggle light / dark theme

A stroke occurs when blood flow to an area of the brain is suddenly cut off. The brain cells get deprived of oxygen and begin to die quickly. Having a stroke is a scary thought, but you can be mindful of your health to reduce the chances of having one.

Wow!


Brain Computer interface technology opens up a world of possibilities. We are on the cusp of this technology that is so powerful and has the potential to so radically transform our lives and existence! After starting three venture-funded startups in Silicon Valley, Steven Hoffman, known as Captial Hoff, launched Founders Space with the mission to educate and accelerate entrepreneurs and intrapreneur. Founder Space has become one of the top startup accelerators in the world with over 50 partners in 22 countries. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

A collaborative study published today in the journal Cell Reports provides evidence for a new molecular cause for neurodegeneration in Alzheimer’s disease. The study, led by researchers at Baylor College of Medicine and the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, integrates data from human brain autopsy samples and fruit flies to reveal a novel mechanistic link between alterations in RNA splicing and tau-mediated neurodegeneration in Alzheimer’s disease.

“Cells carry out their functions by producing specific proteins encoded in their genes. To produce proteins, genes encoded in the DNA are first transcribed into RNA molecules, which subsequently are translated into proteins,” said corresponding author Dr. Joshua Shulman, associate professor of neurology, neuroscience and molecular and human genetics at Baylor and investigator at the Jan and Dan Duncan Neurological Research Institute.

In this study, Shulman and his colleagues investigated a molecular mechanism called RNA splicing that is involved in the production of mature RNA molecules necessary to produce working proteins. They looked into the possibility that aggregates of within neurons, a key marker of Alzheimer’s disease, interfered with RNA splicing.

https://www.youtube.com/watch?v=b07Pci_-eVY&t=1s

Researchers long wondered how the billions of independent neurons in the brain come together to reliably build a biological machine that easily beats the most advanced computers. All of those tiny interactions appear to be tied to something that guarantees an impressive computational capacity.

Over the past 20 years, evidence mounted in support of a theory that the tunes itself to a point where it is as excitable as it can be without tipping into disorder, similar to a phase transition. This criticality hypothesis asserts that the brain is poised on the fine line between quiescence and chaos. At exactly this line, is maximized.

However, one of the key predictions of this theory—that criticality is truly a set point, and not a mere inevitability—had never been tested. Until now. New research from Washington University in St. Louis directly confirms this long-standing prediction in the brains of freely behaving animals.

Researchers led by the renowned ancient artifacts decoder, Professor Brent Seales, will be using Diamond, the UK’s national synchrotron science facility in the heart of Oxfordshire, to examine a collection of world-famous ancient artifacts owned by the Institut de France. Using this powerful light source and special techniques the team has developed, the researchers are working to virtually unwrap two complete scrolls and four fragments from the damaged Herculaneum scrolls. After decades of effort, Seales thinks the scans from Diamond represent his team’s best chance yet to reveal the elusive contents of these 2,000-year-old papyri.

Prof Seales is director of the Digital Restoration Initiative at the University of Kentucky (US), a research program dedicated to the development of software tools that enable the recovery of fragile, unreadable texts. According to Seales, Diamond Light Source is an absolutely crucial element in our long-term plan to reveal the writing from damaged materials, as it offers unparalleled brightness and control for the images we can create, plus access to a brain trust of scientists who understand our challenges and are eager to help us succeed.?Texts from the ancient world are rare and precious, and they simply cannot be revealed through any other known process. Thanks to the opportunity to study the scrolls at Diamond Light Source, which has been made possible by the National Endowment for the Humanities and the Andrew Mellon Foundation, we are poised to take a tremendous step forward in our ability to read and visualize this material.

Klotho, named after one of the Fates of Greek mythology, is the queen of anti-aging proteins. There are no close contenders at this time. Klotho gene therapy, like the one offered by Integrated Health Systems, has tremendous benefits. While it is produced primarily in the kidneys and brain, its soluble form circulates throughout the body. Many of the investigations so far have been done nephrologists interested in its prominent role in Chronic Kidney Disease (CKD), yet over the last decade its multifaceted role in the aging process has become a topic of intense research.

Klotho deficient mice show premature aging in multiple organs.

Inducing KL overexpression with a viral vector, like AAV, not only reverses this premature aging, but also enhances resistance to oxidative and ischemic damage. More impressive, KL outright extends the lifespans of mice, likely be inhibiting IGF and insulin signalling. Dubbed an “aging suppressor gene,” it can yield results similar to caloric restriction – what is, at this time, the most tried and true method of extending the lifespans of a variety of model organisms.

A series of clinical trials have tested an experimental treatment for Parkinson’s disease that uses a novel approach: administering the drug straight into the brain via implanted ports. The leading researchers believe this may be a “breakthrough” therapeutic strategy for neurological conditions.

Newly trialed therapy could launch a fresh chapter in the treatment of Parkinson’s disease.

In a new series of studies that culminated with an open-label trial (where participants were aware of what treatment they would receive), scientists have begun testing the effectiveness of a new treatment — and method of delivery — for Parkinson’s disease.