Toggle light / dark theme

Good news for MRIs; maybe witht he precision we also may not have to do any repeat scans as well.


Precision Glass & Optics recently announced the customization of two thin film optical components for a high-field magnetic resonance imaging (MRI) accessory. They developed the dielectric cold mirror and cylindrical prism mirror for the Real Eye Nano; an advanced visual presentation and eye-tracking system constructed of glass and plastic with a reduced size for operation in confined MRI spaces.

Read more

Interesting — DNA Microchips to be released soon.


Researchers presented this incredible work at the national meeting and exposition of the American Chemical Society (ACS) in San Diego, California, on Sunday.

Adam T Woolley, professor of chemistry at Brigham Young University (BYU) said that they are planning to use DNA’s small size and base-pairing capabilities and ability to self-assemble, and direct it to make nanoscale structures that could be used for electronics.

“The problem, however, is that DNA does not conduct electricity very well. So we use the DNA as a scaffold and then assemble other materials on the DNA to form electronics,” Woolley added.

Read more

Researchers in the US have proposed a new form of wind power: small, artificial, mechanical trees capable of producing energy from their vibrations. Working with the natural breeze, or small movements caused by other factors, the scientists hope that new forms of renewable energy can be developed in the future.

The idea is to create a device that can convert random forces – whether that’s from the footfall of pedestrians on a bridge, or a passing gust of wind – into electricity that can be used to power devices. And the researchers have found that tree-like structures made from electromechanical materials are perfect for the task.

“Buildings sway ever so slightly in the wind, bridges oscillate when we drive on them and car suspensions absorb bumps in the road,” said project leader Ryan Harne from Ohio State University. “In fact, there’s a massive amount of kinetic energy associated with those motions that is otherwise lost. We want to recover and recycle some of that energy.”

Read more

Graphene, that atomic-scale super material that promises to revolutionize everything from batteries to robots, is already improving the cycling world. Vittoria’s new graphene-infused Mezcal and Morsa bike tires are lightweight, thin, grippy, and everything a cyclist wants in a tire without any tradeoffs.

Choosing what tires to put on your bike usually depends on the conditions in which you’ll be riding. Larger tires provide better grip and durability, but add weight to a bike, while smaller tires are lighter and sleeker but wear out faster and provide minimal traction.

But by adding graphene—that wonder new material made of carbon atoms arranged in a strong honeycomb pattern—Vittoria’s new G+, or Graphene Plus, tires exhibit wonderful new properties. When riding on straightaways, the dual-layer makeup of the G+ tires allows them to remain firm for lower rolling resistance and added speed. But when a cyclist is braking or cornering, the tires get soft for added traction and grip.

Read more

Q-Dots windows to power homes and other buildings.


Researchers at the Los Alamos National Lab may have found a way to take quantum dots and put them in your ordinary windows to turn them into solar collectors.

Photovoltaic cells may be cheaper and more efficient than ever, but you still need to find a place to put them.

Looking to solve these space constraints, Los Alamos partnered with the University of Milano in Italy to see if they could turn windows into electric generators.

As nanocrystals roughly one-billionth of a meter across, — that is as small as 10 atoms wide — quantum dots can absorb light at one wavelength, convert it and re-emit it at another wavelength.

So the dots would absorb sunlight and convert it to a wavelength best suited for the photovoltaic cells, then be guided to the solar cells installed at its edges to electricity.

The University of Milan is responsible for the new industrial method that embeds the dots in a transparent material.

Read more

I don’t believe that we’re a decade away given the advancements around Quantum infrastructure work such the Quantum Internet and Platform. Too much progress is showing me within the next 7 to 8 years is a possibility especially with the race that we’re all in.


Bill Gates did an Ask Me Anything on Reddit Tuesday and said that there’s a chance within six to ten years that “cloud computing will offer super-computation by using quantum.”

“It could help users solve some very important science problems, including materials and catalyst design,” Gates wrote.

Quantum computing could help users analyze very large amounts of data quicker than they can do now with processor-based computers. While D-Wave offers quantum computing hardware, there is some debate over whether the products actually achieve quantum computing. Gates noted that Microsoft and others are working on quantum computing but steered clear of any debate about whether actual systems are on the market now.

Read more

Pretty cool.


Scientists report that amino acids, not sugar, supply most building blocks for cancerous tumor cells. Cancer cells are notorious for their ability to divide uncontrollably and generate hordes of new tumor cells. Most of the fuel consumed by these rapidly proliferating cells is glucose, a type of sugar.

Scientists had believed that most of the cell mass that makes up new cells, including cancer cells, comes from that glucose. However, MIT biologists have now found, to their surprise, that the largest source for new cell material is amino acids, which cells consume in much smaller quantities.

The findings offer a new way to look at cancer cell metabolism, a field of research that scientists hope will yield new drugs that cut off cancer cells’ ability to grow and divide.

Read more

New skin for keeping you under the radar.


Because the meta-skin is stretchable, it can be pulled tight to augment the range of radar frequencies trapped by the resonators.

The project set out to prove that that electromagnetic waves — “perhaps even the shorter wavelengths of visible light” — can be adequately suppressed with flexible, tunable liquid-metal technologies. The material is made up of rows of rings, with a radius of 0.1 inches (2.5mm) and gaps of 0.04 inches (1mm). They’re filled with galinstan, a metal alloy that remains liquid at room temperatures and is less toxic than metals who share this property, such as mercury. Each resonator acts like a small curved piece of liquid wire.

The rings create electric inductors and the gaps create electric capacitors.

Read more