Toggle light / dark theme

On-chip frequency shifters in the gigahertz range could be used in next generation quantum computers and networks.

The ability to precisely control and change properties of a photon, including polarization, position in space, and arrival time, gave rise to a wide range of communication technologies we use today, including the Internet. The next generation of photonic technologies, such as photonic quantum networks and computers, will require even more control over the properties of a photon.

One of the hardest properties to change is a photon’s color, otherwise known as its frequency, because changing the frequency of a photon means changing its energy.

Watch the newest video from Big Think: https://bigth.ink/NewVideo.
Join Big Think+ for exclusive videos: https://bigthink.com/plus/

What does it mean when someone calls you smart or intelligent? According to developmental psychologist Howard Gardner, it could mean one of eight things. In this video interview, Dr. Gardner addresses his eight classifications for intelligence: writing, mathematics, music, spatial, kinesthetic, interpersonal, and intrapersonal.

HOWARD GARDNER: Howard Gardner is a developmental psychologist and the John H. and Elisabeth A. Hobbs Professor of Cognition and Education at the Harvard Graduate School of Education. He holds positions as Adjunct Professor of Psychology at Harvard University and Senior Director of Harvard Project Zero. Among numerous honors, Gardner received a MacArthur Prize Fellowship in 1981. In 1990, he was the first American to receive the University of Louisville’s Grawemeyer Award in Education and in 2000 he received a Fellowship from the John S. Guggenheim Memorial Foundation. In 2005 and again in 2008 he was selected by Foreign Policy and Prospect magazines as one of 100 most influential public intellectuals in the world. He has received honorary degrees from twenty-two colleges and universities, including institutions in Ireland, Italy, Israel, and Chile. The author of over twenty books translated into twenty-seven languages, and several hundred articles, Gardner is best known in educational circles for his theory of multiple intelligences, a critique of the notion that there exists but a single human intelligence that can be assessed by standard psychometric instruments. During the past twenty five years, he and colleagues at Project Zero have been working on the design of performance-based assessments, education for understanding, and the use of multiple intelligences to achieve more personalized curriculum, instruction, and assessment. In the middle 1990s, Gardner and his colleagues launched The GoodWork Project. “GoodWork” is work that is excellent in quality, personally engaging, and exhibits a sense of responsibility with respect to implications and applications. Researchers have examined how individuals who wish to carry out good work succeed in doing so during a time when conditions are changing very quickly, market forces are very powerful, and our sense of time and space is being radically altered by technologies, such as the web. Gardner and colleagues have also studied curricula. Gardner’s books have been translated into twenty-seven languages. Among his books are The Disciplined Mind: Beyond Facts and Standardized Tests, The K-12 Education that Every Child Deserves (Penguin Putnam, 2000) Intelligence Reframed (Basic Books, 2000), Good Work: When Excellence and Ethics Meet (Basic Books, 2001), Changing Minds: The Art and Science of Changing Our Own and Other People’s Minds (Harvard Business School Press, 2004), and Making Good: How Young People Cope with Moral Dilemmas at Work (Harvard University Press, 2004; with Wendy Fischman, Becca Solomon, and Deborah Greenspan). These books are available through the Project Zero eBookstore. Currently Gardner continues to direct the GoodWork project, which is concentrating on issues of ethics with secondary and college students. In addition, he co-directs the GoodPlay and Trust projects; a major current interest is the way in which ethics are being affected by the new digital media. In 2006 Gardner published Multiple Intelligences: New Horizons, The Development and Education of the Mind, and Howard Gardner Under Fire. In Howard Gardner Under Fire, Gardner’s work is examined critically; the book includes a lengthy autobiography and a complete biography. In the spring of 2007, Five Minds for the Future was published by Harvard Business School Press. Responsibility at Work, which Gardner edited, was published in the summer of 2007.

TRANSCRIPT: Howard Gardner: Currently I think there are eight intelligences that I’m very confident about and a few more that I’ve been thinking about. I’ll share that with our audience. The first two intelligences are the ones which IQ tests and other kind of standardized tests valorize and as long as we know there are only two out of eight, it’s perfectly fine to look at them. Linguistic intelligence is how well you’re able to use language. It’s a kind of skill that poets have, other kinds of writers; journalists tend to have linguistic intelligence, orators. The second intelligence is logical mathematical intelligence. As the name implies logicians, mathematicians…Read the full transcript at https://bigthink.com/videos/howard-gardner-on-the-eight-intelligences

Welcome to AIP.
- The main focus of this channel is to publicize and promote existing SoTA AI research works presented in top conferences, removing barrier for people to access the cutting-edge AI research works.
- All videos are either taken from the public internet or the Creative Common licensed, which can be accessed via the link provided in the description.
- To avoid conflict of interest with the ongoing conferences, all videos are published at least 1 week after the main events. A takedown can be requested if it infringes your right via email.
- If you would like your presentation to be published on AIP, feel free to drop us an email.
- AI conferences covered include: NeurIPS (NIPS), AAAI, ICLR, ICML, ACL, NAACL, EMNLP, IJCAI

If you would like to support the channel, please join the membership:
https://www.youtube.com/c/AIPursuit/join.

Donation:
Paypal ⇢ https://paypal.me/tayhengee.
Patreon ⇢ https://www.patreon.com/hengee.
Donate any cryptocurrency on BEP20 (BTC, ETH, USDT, BNB, Doge, Shiba): 0x0712795299bf00eee99f13b4cda0e19dc656bf2c.
BTC ⇢ 1BwE1gufcE5t1Xh4w3wQhGgcJuCTb7AGj3
ETH ⇢ 0x0712795299bf00eee99f13b4cda0e19dc656bf2c.
Doge ⇢ DL57g3Qym7XJkRUz5VTU97nvV3XuvvKqMX
USDT (TRN20) ⇢ THV9dCnGfWtGeAiZEBZVWHw8JGdGCWC4Sh.

The video is reposted for educational purposes and encourages involvement in the field of AI research.

A good GitHub repo on self supervised learning: https://github.com/jason718/awesome-self-supervised-learning#machine-learning

A team of researchers from TU Delft managed to design one of the world’s most precise microchip sensors. The device can function at room temperature—a ‘holy grail’ for quantum technologies and sensing. Combining nanotechnology and machine learning inspired by nature’s spiderwebs, they were able to make a nanomechanical sensor vibrate in extreme isolation from everyday noise. This breakthrough, published in the Advanced Materials Rising Stars Issue, has implications for the study of gravity and dark matter as well as the fields of quantum internet, navigation and sensing.

One of the biggest challenges for studying vibrating objects at the smallest scale, like those used in sensors or quantum hardware, is how to keep ambient thermal noise from interacting with their fragile states. Quantum hardware for example is usually kept at near absolute zero (−273.15°C) temperatures, and refrigerators cost half a million euros apiece. Researchers from TU Delft created a web-shaped microchip sensor that resonates extremely well in isolation from room temperature noise. Among other applications, their discovery will make building quantum devices much more affordable.

To address the growing threat of cyberattacks on industrial control systems, a KAUST team including Fouzi Harrou, Wu Wang and led by Ying Sun has developed an improved method for detecting malicious intrusions.

Internet-based are widely used to monitor and operate factories and critical infrastructure. In the past, these systems relied on expensive dedicated networks; however, moving them online has made them cheaper and easier to access. But it has also made them more vulnerable to attack, a danger that is growing alongside the increasing adoption of internet of things (IoT) technology.

Conventional security solutions such as firewalls and are not appropriate for protecting industrial control systems because of their distinct specifications. Their sheer complexity also makes it hard for even the best algorithms to pick out abnormal occurrences that might spell invasion.

It’s a cool concept; the blades cant get caught, or stuck, or broken. but, it’s pretty loud, there’s no audio in the demo videos. Still, i think a flying drone would be superior for exploring underground structurers and caves, til it hit a door or something anyways. Anyhow, i think the flight system should focus on some kind of a total silence ion drive.


It was three years ago that we first heard about the Cleo, a robust, donut-shaped prototype drone made by Cleo Robotics. Well, its successor is now commercially available, under the new (and apt) name of the Dronut X1.

Like its predecessor, the Dronut X1 features just two counter-rotating rotors stacked one above the other. While we have seen other drones that take this approach, Cleo Robotics goes the extra step of enclosing those rotors within a composite ducted body. This means that they can’t harm bystanders, nor can they be harmed when bumping into obstacles such as walls.

According to the company, the X1 is designed for applications such as inspection and reconnaissance within cramped and/or GPS-denied environments. It’s Wi-Fi-controlled via a joystick remote and an Android app, although it can autonomously hold its position, and it can avoid obstacles with some help from an onboard 3D LiDAR sensor. Steering is managed through a proprietary thrust vectoring system.

Elon Musk’s SpaceX told Starlink customers they’d have internet service by mid-to late 2021, but some customers say it’s now been delayed to 2022.

The ability to precisely control and change properties of a photon, including polarization, position in space, and arrival time, gave rise to a wide range of communication technologies we use today, including the Internet. The next generation of photonic technologies, such as photonic quantum networks and computers, will require even more control over the properties of a photon.

One of the hardest properties to change is a photon’s color, otherwise known as its frequency, because changing the frequency of a photon means changing its energy.

Today, most frequency shifters are either too inefficient, losing a lot of light in the , or they can’t convert light in the gigahertz range, which is where the most important frequencies for communications, computing, and other applications are found.

Over the past several decades, researchers have moved from using electric currents to manipulating light waves in the near-infrared range for telecommunications applications such as high-speed 5G networks, biosensors on a chip, and driverless cars. This research area, known as integrated photonics, is fast evolving and investigators are now exploring the shorter—visible—wavelength range to develop a broad variety of emerging applications. These include chip-scale LIDAR (light detection and ranging), AR/VR/MR (augmented/virtual/mixed reality) goggles, holographic displays, quantum information processing chips, and implantable optogenetic probes in the brain.

The one device critical to all these applications in the is an optical phase modulator, which controls the phase of a light wave, similar to how the phase of radio waves is modulated in wireless computer networks. With a phase modulator, researchers can build an on-chip that channels light into different waveguide ports. With a large network of these optical switches, researchers could create sophisticated integrated optical systems that could control light propagating on a tiny chip or light emission from the chip.

But phase modulators in the visible range are very hard to make: there are no materials that are transparent enough in the visible spectrum while also providing large tunability, either through thermo-optical or electro-optical effects. Currently, the two most suitable materials are silicon nitride and lithium niobate. While both are highly transparent in the visible range, neither one provides very much tunability. Visible-spectrum phase modulators based on these materials are thus not only large but also power-hungry: the length of individual waveguide-based modulators ranges from hundreds of microns to several mm and a single modulator consumes tens of mW for phase tuning. Researchers trying to achieve large-scale integration—embedding thousands of devices on a single microchip—have, up to now, been stymied by these bulky, energy-consuming devices.