Toggle light / dark theme

Chia-Chiunn Ho was eating lunch inside Facebook headquarters, at the Full Circle Cafe, when he saw the notice on his phone: Larry Zitnick, one of the leading figures at the Facebook Artificial Intelligence Research lab, was teaching another class on deep learning.

Ho is a 34-year-old Facebook digital graphics engineer known to everyone as “Solti,” after his favorite conductor. He couldn’t see a way of signing up for the class right there in the app. So he stood up from his half-eaten lunch and sprinted across MPK 20, the Facebook building that’s longer than a football field but feels like a single room. “My desk is all the way at the other end,” he says. Sliding into his desk chair, he opened his laptop and surfed back to the page. But the class was already full.

Internet giants have vacuumed up most of the available AI talent—and they need more.

Read more

The Laser Communications Relay Demonstration (LCRD) will help NASA understand the best ways to operate laser communications systems. They could enable much higher data rates for connections between spacecraft and Earth, such as scientific data downlink and astronaut communications.

“LCRD is the next step in implementing NASA’s vision of using optical communications for both near-Earth and deep space missions,” said Steve Jurczyk, associate administrator of NASA’s Space Technology Mission Directorate, which leads the LCRD project. “This technology has the potential to revolutionize space communications, and we are excited to partner with the Human Exploration and Operations Mission Directorate’s Space Communications and Navigation program office, MIT Lincoln Labs and the U.S. Air Force on this effort.”

Laser communications, also known as optical communications, encodes data onto a beam of light, which is then transmitted between spacecraft and eventually to Earth terminals. This technology offers data rates that are 10 to 100 times better than current radio-frequency (RF) communications systems.

Read more

CAMBRIDGE, Mass. — A new propulsion engine with dime-size thrusters could be used to propel a host of spacecraft, from small satellites to crewed ships designed for interplanetary exploration.

The new propulsion engine, called Tile, could serve as an efficient and lightweight way to keep constellations of small satellites in orbit. Spaceflight companies — including OneWeb, Boeing and SpaceX — want to launch hundreds of thousands of these small satellites to provide broadband internet to everyone around the globe. And because several Tiles can be connected to produce more power, the engine has the potential to propel astronauts to Mars, according to Accion Systems, the company that designed Tile.

“Our technology starts on a nanometer scale, and then we can array that and scale that up to serve satellites,” said Natalya Bailey, CEO of Accion Systems. Bailey described the propulsion engine to an audience here at the New Space Age Conference at the Massachusetts Institute of Technology’s (MIT) Sloan School of Management on March 11. [Superfast Spacecraft Propulsion Concepts (Images)].

Read more

If you’re frustrated with slow wi-fi, you might be one of the many people eagerly awaiting the commercialisation of li-fi (or light-based wi-fi), which promises to be up to 100 times faster than the connections we use today.

Most li-fi systems rely on transmitting data via LED bulbs, which means there are some limitations to how easily the technology could be applied to systems outside the lab. But researchers have come up with a new type of li-fi that uses infrared light instead, and it’s reportedly already cracked 40 gigabits per second (gbps) in early testing.

For those who missed the li-fi hype, the communications system was first invented in 2011, based on the idea of transmitting data via the imperceptible flickering of LED light — think morse code happening so fast, it’s invisible to the human eye.

Read more

Biometrics – technology that can recognise individuals based on physical and behavioural traits such as their faces, voices or fingerprints – are becoming increasingly important to combat financial fraud and security threats. This is because traditional approaches, such as those based on PIN numbers or passwords, are proving too easily compromised. For example, Barclays has introduced TouchID, whereby customers can log onto internet banking using fingerprint scanners on mobile phones.

However, this is not foolproof either – it is possible to forge such biometrics. Fingers can after all be chopped off and placed by impostors to gain fraudulent access. It has also been shown that prints lifted from glass using cellophane tape can be used with gelatine to create fake prints. So there is a real need to come up with more advanced biometrics that are difficult or impossible to forge. And a promising alternative is the brain.

Emerging biometric technology based on the electrical activity of the brain have indeed shown potential to be fraud resistant. Over the years, a number of research studies have found that “brainprints” (readings of how the brain reacts to certain words or tasks) are unique to individuals as each person’s brain is wired to think differently. In fact, the brain can be used to identify someone from a pool of 102 users with more than 98% accuracy at the moment, which is very close to that of fingerprints (99.8% accuracy).

Read more

“We will implement a comprehensive plan to boost strategic emerging industries,” said Premier Li Keqiang in his delivery at the annual parliamentary session in Beijing over the weekend.

“We will accelerate research & development (R&D) on, and the commercialisation of new materials, artificial intelligence (AI), integrated circuits, bio-pharmacy, 5G mobile communications, and other technologies.”


One analyst now projecting industry in China to grow by more than 50 per cent in value to US$5.5 billion by 2018.

PUBLISHED : Thursday, 09 March, 2017, 5:36pm.

UPDATED : Thursday, 09 March, 2017, 10:59pm.

Read more

IBM esta anunciando que estão desenvolvendo um sistema universal de “computação qu ntica”

O serviço será chamado IBM Q, e ele dará às pessoas acesso ao seu computador qu ntico de estágio inicial pela internet para usar como desejar — por uma taxa.

O grande elefante na sala é que, por enquanto, o computador qu ntico da IBM só funciona com cinco qubits, então não é muito mais rápido (se houver mais rápido) do que um computador convencional.

Read more

Our data-driven society is churning out more information than traditional storage technology can handle, so scientists are looking for a solution in Nature’s hard drive: DNA. A pair of researchers at Columbia University and the New York Genome Center recently wrote a full computer operating system, an 1895 French film, an Amazon gift card and other files into DNA strands and retrieved them without errors, according to a study published in the latest edition of Science.

There are several advantages to using DNA. It’s a lot smaller than traditional media; a single gram can fit 215,000 times more data than a one terabyte hard drive, The Atlantic notes. It’s also incredibly durable. Scientists are using DNA thousands of years old to de-extinct wooly mammoths, for example. But, until now, they’ve only unlocked a fraction of its storage capacity. Study coauthors Yaniv Erlich and Dina Zielinski were able to fit the theoretical maximum amount of information per nucleotide using a new method inspired by how movies stream across the internet.

“We mapped the bits of the files to DNA nucleotides. Then, we synthesized these nucleotides and stored the molecules in a test-tube,” Erlich explained in an interview with ResearchGate. “To retrieve the information, we sequenced the molecules. This is the basic process. To pack the information, we devised a strategy—called DNA Fountain—that uses mathematical concepts from coding theory. It was this strategy that allowed us to achieve optimal packing, which was the most challenging aspect of the study.”

Read more