Toggle light / dark theme

1. Google Search.

2. Facebook’s News Feed.

3. OKCupid Date Matching.

4. NSA Data Collection, Interpretation, and Encryption.

5. “You May Also Enjoy…”

6. Google AdWords.

7. High Frequency Stock Trading.

8. MP3 Compression.

9. IBM’s CRUSH (Criminal Reduction Utilizing Statistical History)

10. Auto-Tune


The importance of algorithms in our lives today cannot be overstated. They are used virtually everywhere, from financial institutions to dating sites. But some algorithms shape and control our world more than others — and these ten are the most significant.

Just a quick refresher before we get started. Though there’s no formal definition, computer scientists describe algorithms as a set of rules that define a sequence of operations. They’re a series of instructions that tell a computer how it’s supposed to solve a problem or achieve a certain goal. A good way to think of algorithms is by visualizing a flowchart.

Read more

A viral video about a new app looks like a dream come true for anyone who struggles with math.

Based on the promo clip, PhotoMath, dubbed a “smart camera calculator,” appears to use smartphone cameras to scan a photo of a math equation in a textbook and display the answer instantly — similar to apps that scan barcodes and takes users to a link in a web browser. It looks like the app can also show step-by-step instructions for solving the problem.

PhotoMath’s parent company MicroBLINK launched the app this week at TechCrunch Disrupt Europe in London, TechCrunch reports. It is available in the App Store on iTunes.

Read more

https://youtube.com/watch?v=c_YV_omTtAg

But the ultimate goals of the project are nothing short of amazing: “The best possible outcome is to map the entirety of existing cache of neural network algorithms and applications to this energy-efficient substrate,” said Modha. “And, to invent entirely new algorithms that were hereto before impossible to imagine.”


IBM scientists are advancing toward “neuromorphic” computing — digital systems that process information like the brain — and launching a complete ecosystem for brain-like computing, with important near-term applications and visionary long-term prospects.

“For decades, computer scientists have been pursuing two elusive goals in parallel: engineering energy-efficient computers modeled on the human brain and designing smart computing systems that learn on their own — like humans do — and are not programmed like today’s computers,” said Dharmendra S. Modha, IBM Fellow and Chief Scientist for brain-inspired computing.

Read more

“I am prepared to meet my Maker. Whether my Maker is prepared for the great ordeal of meeting me is another matter.” — Winston Churchill

Death still enjoys a steady paycheck, but being the Grim Reaper isn’t the cushy job that it used to be.

Quoted: “Traditional law is a form of agreement. It is an agreement among people and their leaders as to how people should behave. There are also legal contracts between individuals. These contracts are a form of private law that applies to the participants. Both types of agreement are enforced by a government’s legal system.”

“Ethereum is both a digital currency and a programming language. But it is the combination of these ingredients that make it special. Since most agreements involve the exchange of economic value, or have economic consequences, we can implement whole categories of public and private law using Ethereum. An agreement involving transfer of value can be precisely defined and automatically enforced with the same script.”

“When viewed from the future, today’s current legal system seems downright primitive. We have law libraries — buildings filled with words that nobody reads and whose meaning is unclear, even to courts who enforce them arbitrarily. Our private contracts amount to vague personal promises and a mere hope they might be honored.

For the first time, Ethereum offers an alternative. A new kind of law.”

Read the article here > http://etherscripter.com/what_is_ethereum.html

Quoted: “IBM’s first report shows that “a low-cost, private-by-design ‘democracy of devices’ will emerge” in order to “enable new digital economies and create new value, while offering consumers and enterprises fundamentally better products and user experiences.” “According to the company, the structure we are using at the moment already needs a reboot and a massive update. IBM believes that the current Internet of Things won’t scale to a network that can handle hundreds of billions of devices. The operative word is ‘change’ and this is where the blockchain will come in handy.”

Read the article here > https://99bitcoins.com/ibm-believes-blockchain-elegant-solution-internet-of-things/

MilanPhotoCollage_md

Hosted by the IEEE Geoscience and Remote Sensing Society, the International Geoscience and Remote Sensing Symposium 2015 (IGARSS 2015) will be held from Sunday July 26th through Friday July 31th, 2015 at the Convention Center in Milan, Italy. This is the same town of the EXPO 2015 exhibition, whose topic is “Feeding the planet: energy for life”.

Read more

Last year, Google began experimenting with hardware-based schemes for user-authentication, while Apple added two factor authentication to iCloud and Apple ID users. They began sending a verification code to users via a mobile number registered in advance.

Security pundits know that two factor authentication is more secure than simple passwords. As a refresher, “Factors” are typically described like this:

  • Something that you know (a password — or even better, a formula)
  • Something that you have (Secure ID token or code sent to cell phone)
  • Something that you are (a biometric: fingerprint, voice, face, etc.)

The Google project may be just another method of factor #2. In fact, because it is small (easily misplaced or stolen), it simplifies but does not improve on security. I suggest a radical and reliable method of authentication. It’s not new and it’s not my idea…

password_key

Back in 1999, Hugh Davies (no relation to Ellery) was awarded a patent on a novel form of access and authentication. It capitalizes on the human ability to quickly pick a familiar face out of a crowd. Just as with passwords, it uses something that you know to log in, purchase, or access a secure service. But unlike passwords, the “combination” changes with every use, and yet the user needn’t learn anything new.

Hoping to commercialize the technique, Davies joined another Brit, Paul Barrett, and formed Passfaces (originally, Real User Corporation). Incidentally, it is quite difficult to research Passfaces and its history. Web searches for “face recognition”, “access”, “authentication” and “patent” yield results for a more recent development in which a smart phone recognizes the face of authorized users, rather than users recognizing familiar faces. (Google, Samsung and Apple are all beginning to use face recognition on mobile devices). In fact, the Passfaces method is quicker, uses less resources and is far more reliable.

I have long been disappointed and surprised that the technique has never caught on. It is a terrific method with few drawbacks. Used alone, it is better than other methods of 1 or 2 factor authentication. Add a second factor and it is remarkably secure and robust.

How it Works:

Passfaces-1When accessing or authenticating (for example, logging into a corporate VPN or completing a credit card purchase), you are presented with a tiled screen of individual faces. I prefer a big 15×5 grid = 75 images, but Passfaces uses sequential screens of just 9 faces arranged like the number pad on an ATM.

Just click on a few familiar faces. That’s all! Oddly, Passfaces discourages the use of known faces. Their research, with which I respectfully disagree, suggests that users should train themselves to recognize a few faces from the company’s stock library. In my preferred embodiment, users upload a dozen photos of people they know at a glance—preferably, people that they knew in the past: A 3rd grade music teacher, a childhood friend who moved away, the face on an oil painting that hung in the basement until Dad tossed it in the fireplace. Now, add the boss who fired you from your first job, the prom queen who dumped you for a football jock, and that very odd doorman who stood in front of a hotel in your neighborhood for 20 years. Photos of various quality and resolution, but all scaled to fit the grid. Some are black & white, perhaps scanned from an old yearbook.

Using my preferred example of 75 faces, suppose that 5 or 6 of the images are from your personal shoe box of old photos. The rest are randomly inserted from all over the internet. How long would take you to click on 3 of the 5 or 6 familiar faces in front of you? (Remember: They are old acquaintances. Even a spouse would have difficulty picking out 3 faces from your early life—as they looked back then). Surprise! You will click them instantly, especially on a touch screen. You won’t need even a second to study the collage. They jump off the screen because your brain perceives a familiar face very differently and faster than anything else.

Of course, the photo array is mixed in different ways for each authentication and it incorporates different friends from your original upload. In fact, if a user sees the same faces in the next few transactions, it is a red flag. Someone has spied on the process, perhaps with a local camera or screen logger. In legitimate use, the same faces are not recycled for many days and are never shown together on the same screen.

Facebook uses a variant of this technique when their servers sense your attempt to login from new equipment or from another part of the country. They show you individuals that you have friended, but that were uploaded and tagged by other users. If you cannot identify a few of your own friends, especially the ones with which you have frequent social contact, than it’s likely that your login attempt deserves more scrutiny.

I don’t know why Passfaces or something like it has failed to catch fire. Perhaps the inventor refuses to license the method at reasonable cost or perhaps he cannot find a visionary VC or angel consortium to more aggressively promote it. If I had invented and patented facial-array authentication, I would attempt to market the patent for a short time focusing on very large network companies like Microsoft, Google, Cisco or Akamai. If I could not license or sell the patent quickly, I would hesitate to go it alone. (I have tried that route too many times). Instead, I would place it in the public domain and profit by being the first, and most skilled practitioner at deployment. I would train and certify others and consult to organizations that use or commercialize the technology.

saira.maskI used this approach in promoting my own patent which describes an economic barrier to spam (after failing to exploit the invention with my own company). Later, I started with this approach in my research on Blind Signaling and Response and on Reverse Distributed Data Clouds. I recognized that rapid adoption of transformative technology like facial grid authentication, can be thwarted by defensive IP practice.

« Branching somewhat off topic, a developmental biologist at Imperial College in London, has published a proof that Saira Mohan has the world’s most beautiful face, irrespective of the observer’s race. That’s Saira at left. Her mother is French/Irish and her father is Hindoo.

__________
Philip Raymond is Co-Chair of The Cryptocurrency Standards Association [crypsa.org] and
chief editor at AWildDuck.com. He consults to cloud storage vendors in areas of security, pri–
vacy & network architecture, but has no ties to Passfaces or the authentication community.