Toggle light / dark theme

Sleep deprivation causes an inflammatory response that results in negative health outcomes.


Summary: Study sheds light on DNA methylation related to sleep deprivation in those with shift-work disorder.

Source: University of Helsinki

Long-term sleep deprivation is detrimental to health, increasing the risk of psychiatric and somatic disorders, such as depression and cardiovascular diseases. And yet, little is known about the molecular biological mechanisms set in motion by sleep deprivation which underlie related adverse health effects.

In a recently published study, the University of Helsinki, the Finnish Institute for Health and Welfare, the Finnish Institute of Occupational Health and the Finnair airline investigated dynamic changes to DNA methylation in shift workers. DNA methylation denotes epigenetic regulation that modifies gene function and regulates gene activity without changing the sequence of bases in the DNA.

In autism, male-female imbalance is especially pronounced. Boys are as much as four times more likely to have some form of autism and are also more likely to have severe symptoms.


HAMILTON, ON, March 3, 2021 — Evolutionary forces drive a glaring gender imbalance in the occurrence of many health conditions, including autism, a team of genetics researchers has concluded.

The human genome has evolved to favour the inheritance of very different characteristics in males and females, which in turn makes men more vulnerable to a host of physical and mental health conditions, say the researchers responsible for a new paper published in the Journal of Molecular Evolution.

Their analysis shows that while there are certain conditions that occur only in women (cervical cancer and ovarian cancer, for example), or much more frequently in women (such as multiple sclerosis), men are more prone to medical conditions overall and, as a result, on average die sooner than women.

In the study, the researchers found that when AML cells were exposed to chemotherapy, a subset of the cells went into a state of hibernation, or senescence, while at the same time assuming a condition that looked very much like inflammation. They looked similar to cells that have undergone an injury and need to promote wound healing—shutting down the majority of their functions while recruiting immune cells to nurse them back to health.


Cancer cells can dodge chemotherapy by entering a state that bears similarity to certain kinds of senescence, a type of “active hibernation” that enables them to weather the stress induced by aggressive treatments aimed at destroying them, according to a new study by scientists at Weill Cornell Medicine. These findings have implications for developing new drug combinations that could block senescence and make chemotherapy more effective.

In a study published Jan. 26 in Cancer Discovery, a journal of the American Association for Cancer Research, the investigators reported that this biologic process could help explain why cancers so often recur after treatment. The research was done in both organoids and mouse models made from patients’ samples of acute myeloid leukemia (AML) tumors. The findings were also verified by looking at samples from AML patients that were collected throughout the course of treatment and relapse.

“Acute myeloid leukemia can be put into remission with , but it almost always comes back, and when it does it’s incurable,” said senior author Dr. Ari M. Melnick, the Gebroe Family Professor of Hematology and Medical Oncology and a member of the Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine. “A longstanding question in the field has been, ‘Why can’t you get rid of all the cancer cells?’ A similar question can be posed for many other types of aggressive cancer in addition to AML.”

Stress may improve intelligence. That does not mean you should desire problems.


Summary: People who experience fewer stressors in daily life report better emotional stability, moods, and overall health. However, those who are less stressed score lower on cognitive tests than those who experience daily stressors. Those who are stress-free are also less likely to give emotional support or experience positive things happening throughout the day.

Source: Penn State

Stress is a universal human experience that almost everyone deals with from time to time. But a new study found that not only do some people report feeling no stress at all, but that there may be downsides to not experiencing stress.

The researchers found that people who reported experiencing no stressors were more likely to experience better daily well-being and fewer chronic health conditions. However, they were also more likely to have lower cognitive function, as well.

“Most wastewater treatment plants are not designed for the removal of microplastics, so they are constantly being released into the receiving environment,” added Dung Ngoc Pham, NJIT Ph.D. candidate and first author of the study.


It’s estimated that an average-sized wastewater treatment plant serving roughly 400000 residents will discharge up to 2000, 000 microplastic particles into the environment each day. Yet, researchers are still learning the environmental and human health impact of these ultra-fine plastic particles, less than 5 millimeters in length, found in everything from cosmetics, toothpaste and clothing microfibers, to our food, air and drinking water.

Now, researchers at New Jersey Institute of Technology have shown that ubiquitous microplastics can become ‘hubs’ for and pathogens to grow once they wash down household drains and enter treatment plants—forming a slimy layer of buildup, or biofilm, on their surface that allows pathogenic microorganisms and antibiotic waste to attach and comingle.

In findings published in the Journal of Hazardous Materials Letters, researchers found certain strains of elevated by up to 30 times while living on biofilms that can form inside activated sludge units at municipal wastewater treatment plants.

The FDA does not use modern updated science to retest chemicals in food. This study showed that a common food preservative can increase food allergies and damage the immune system.


New science suggests the FDA should test all food chemicals for safety.

A food preservative used to prolong the shelf life of Pop-Tarts, Rice Krispies Treats, Cheez-Its and almost 1250 other popular processed foods may harm the immune system, according to a new peer-reviewed study by Environmental Working Group.

For the study, published this week in the International Journal of Environmental Research and Public Health, EWG researchers used data from the Environmental Protection Agency’s Toxicity Forecaster, or ToxCast, to assess the health hazards of the most common chemicals added to food, as well as the “forever chemicals” known as PFAS, which can migrate to food from packaging.

Furthermore, it implies that defects in the repair process, not the DNA damage itself, can potentially lead to developmental or neurodegenerative diseases.


Researchers at the National Institutes of Health (NIH) have discovered specific regions within the DNA of neurons that accumulate a certain type of damage (called single-strand breaks or SSBs). This accumulation of SSBs appears to be unique to neurons, and it challenges what is generally understood about the cause of DNA damage and its potential implications in neurodegenerative diseases.

Because neurons require considerable amounts of oxygen to function properly, they are exposed to high levels of free radicals—toxic compounds that can damage DNA within cells. Normally, this damage occurs randomly. However, in this study, damage within neurons was often found within specific regions of DNA called “enhancers” that control the activity of nearby genes.

Fully mature cells like neurons do not need all of their genes to be active at any one time. One way that cells can control gene activity involves the presence or absence of a chemical tag called a methyl group on a specific building block of DNA. Closer inspection of the neurons revealed that a significant number of SSBs occurred when methyl groups were removed, which typically makes that gene available to be activated.

COVID-21 is the product of all these changes in aggregate. It’s the disease as it will be experienced in the months and years to come: with new variants of the virus, new public policies and health behaviors, various degrees of immune memory, and—most important—a cavalcade of new vaccines.

One-quarter of all Americans have now received at least one shot, and that number is racing up. This month, New Yorkers lined up outside Yankee Stadium throughout the night at a makeshift 24/7 vaccination site, until the supply ran out. “If we open 3000 appointments, they will immediately fill,” says Ramon Tallaj, a physician who oversees clinical care in underserved communities across New York City. Demand seems to be growing. If there were sufficient supply, Tallaj told me, his team could be giving out 40000 doses every day. And this should happen soon; the White House says that shortages will end in the coming weeks.

The vaccination effort is sure to change the nature of COVID in unexpected ways. The habitat for the virus is changing: It may still stick in the nasal passages of an immunized person, but it shouldn’t continue on its way into the lungs, much less the toes. The key question is just how long this protection will last, especially against a rapidly mutating virus. Clinical trials have shown the vaccines to be fantastic at preventing serious illness so far, but haven’t yet been able to observe how protection might dissipate over long periods.

And unexpectedly, Covid-19 has proved to be the catalyst. “What the pandemic has done is accelerate the adoption of genomics into infectious disease by several years,” says deSouza, the Illumina chief executive. He also told me he believes that the pandemic has accelerated the adoption of genomics into society more broadly — suggesting that quietly, in the midst of chaos and a global catastrophe, the age of cheap, rapid sequencing has arrived.


Ultrafast and ultracheap sequencing could reshape the future of health care.

A new Covid-19 variant from the Amazon is now responsible for the majority of new infections in Brazil, with many doctors there saying they are seeing more young and otherwise healthy patients falling ill. Hopefully Covid doesnt bounce back and turn into the 1918 flu.


“We’re in the trenches here, fighting a war,” said Andréia Cruz, a 42-year-old emergency-ward nurse in the southern Brazilian city of Porto Alegre. In the past three weeks alone, the surrounding state of Rio Grande do Sul has seen nearly 5000 people die from Covid-19, more than in the final three months of last year.

The spread of the virus in Brazil threatens to turn this country of 213 million into a global public-health hazard. The so-called P.1 strain, present in more than 20 countries and identified in New York last week, is up to 2.2 times more contagious and as much as 61% more able to reinfect people than previous versions of the coronavirus, according to a recent study.

The P.1 is now responsible for the majority of new infections in Brazil, with many doctors here saying they are seeing more young and otherwise healthy patients falling ill. About 30% of people dying from Covid-19 are now under 60, compared with an average of about 26% during Brazil’s previous peak between June and August, according to official figures analyzed by The Wall Street Journal.