Toggle light / dark theme

Following a controversial top-secret meeting last month, a group of scientists have announced that they’re working on synthesizing human genes from scratch. The project, currently titled HGP-Write, has the stated aim of reducing the cost of gene synthesis to “address a number of human health challenges.” As the group explains, that includes growing replacement organs, engineering cancer resistance and building new vaccinations using human cells. But in order for all of that to happen, the scientists may have to also work on developing a blueprint for what a perfect human would look like.

In some ways, the concept is just an extension of current gene editing (CRISPR) techniques that are proving their worth by saving lives. CRISPR has already been used to save the life of a one-year-old girl with a terminal case of drug-resistant leukemia. Other initiatives using the system involve curing hemophilia and HIV, although the latter has proven capable of fighting back against attempts to kill it. This new project, meanwhile, will devote time and resources to examining the ethics and economics of how far we should go with gene editing.

HGP-Write is being led by DNA pioneer George Church, a Harvard biologist who is already working on various projects to tweak humanity. In a profile, Stat revealed that the scientist published a paper in 2014 pushing “de novo synthesis,” the concept of creating perfect genes from scratch. In early 2015, he used CRISPR to implant wooly mammoth DNA into a living Asian elephant as the first step toward bringing extinct animals back from the dead. Which, when you write it down like that, makes him sound like a less plausible version of John Hammond, the fictional creator of Jurassic Park.

Read more

A feel good story on 3D printers.


This lil’ kitty named Sonic is now bionic.

The black-and-white cat, who was surrendered to Denver Animal Shelter over three months ago, had been born with a leg deformity called radial agenesis, according to Meghan Hughes, communications director for Denver Environmental Health.

Because of the deformity, Sonic was forced to drag his leg on the ground to move, she told ABC News today.

Read more

A group of more than 2,000 physicians is calling for the establishment of a universal government-run health system in the US, in a paper in the American Journal of Public Health.

According to the proposal released Thursday, the Affordable Care Act did not go far enough in removing barriers to healthcare access. The physicians’ bold plan calls for implementing a single-payer system similar to Canada’s, called the National Health Program, that would guarantee all residents healthcare.

The new single-payer system would be funded mostly by existing US government funding. The physicians point out that the US government already pays for two-thirds of all healthcare spending in the US, and a single-payer system would cut down on administrative costs, so a transition to a single-payer system would not require significant additional spending.

Read more

My new article for Vice Motherboard on extreme biohacking that compares the Uncanny Valley to Speciation Syndrome:


Transhumanism tech like CRISPR, 3D printing, and coming biological regeneration of limbs will not only change lives for those that have deformities, but it will change how we look at things like a person with a three-foot tail and maybe even a second head.

At the core of all this is the ingrained belief that the human being is pre-formed organism, complete with one head, four limbs, and other standard anatomical parts. But in the transhumanist age, the human being should be looked at more like a machine—like a car, if you will: something that comes out a particular way with certain attributes, but then can be heavily modified. In fact, it can be rebuilt from scratch.

In the future, there may even be walk-in clinics where people can go to have various gene treatments done to affect their bodies. Already, we have IVF centers where people can use radical tech to privately get pregnant—and also control and monitor various stages of a child’s birth. Eventually, if government allows it, gene editing centers will also offer a multitude of designer baby traits, some which also would come via CRISPR. We might even eventually use artificial wombs for the whole process.

Economically, a trillion dollar industry could be created by the burgeoning genetic editing industry—one that greatly benefits human health and science innovation. But of course, first we must get over our fears of modifying the human body and the effects of speciation syndrome.

Read more

By ransdell pierson and bill berkrot.

(Reuters) — U.S. health officials on Thursday reported the first case in the country of a patient with an infection resistant to a last-resort antibiotic, and expressed grave concern that the superbug could pose serious danger for routine infections if it spreads.

“We risk being in a post-antibiotic world,” said Thomas Frieden, director of the U.S. Centers for Disease Control and Prevention, referring to the urinary tract infection of a 49-year-old Pennsylvania woman who had not traveled within the prior five months.

Read more

Perhaps it’s serendipitous, then, that the machines have finally arrived. Truly smart, truly impressive robots and machine learning algorithms that may help usher in a new Green Revolution to keep humans fed on an increasingly mercurial planet. Think satellites that automatically detect drought patterns, tractors that eyeball plants and kill the sick ones, and an AI-powered smartphone app that can tell a farmer what disease has crippled their crop.

Forget scarecrows. The future of agriculture is in the hands of the machines.

A Digital Green Thumb

Deep learning is a powerful method of computing in which programmers don’t explicitly tell a computer what to do, but instead train it to recognize certain patterns. You could feed a computer photos of diseased and healthy plant leaves, labeled as such. From these it will learn what diseased and healthy leaves look like, and determine the health of new leaves on its own.

Read more

An Israeli medical imaging company has signed a deal with a Utah-based healthcare provider that could change the way we diagnose certain conditions. Zebra Medical Imaging is teaming up with Intermountain to work on a neural network that will compare fresh X-rays with the “millions” stored in its own database. The eventual aim of the project is to offer up suggestions to radiographers and other medical professionals and eliminate costly misdiagnoses.

For instance, let’s imagine that you’ve gone to hospital for some unknown condition and you get an X-ray. Rather than handing the slide to a doctor, who could miss a small shadow or other minor clue, the image would be handed to the computer. It would use deep learning to trawl an anonymized patient database looking for any anomalies that you might be suffering from. The current system will work on bone health, cardiovascular analysis and lung conditions, although who knows where the possibilities will end.

As deep learning technology gets more powerful, smaller and significantly cheaper, the potential for AI to assist doctors becomes more realistic. IBM has spent the last few years pushing Watson, its homegrown supercomputer, as a system to aid decision making for patients. At the same time, companies like LG are trying to shrink medical imaging technology to end the days of bulky hospital equipment being available for a chosen few. All in all, the idea of a medical tricorder is going from fantastical to plausible in less time than you’d expect.

Read more

MMTP Campaign update “Aging is a disease”.

Crowdfunding Campaign: https://www.lifespan.io/campaigns/the-major-mouse-testing-program/

We are testing a combination of compounds which clear out dysfunctional cells in the body, called Senolytics, to see if we can extend maximum lifespan and healthspan in mice. Please subscribe, share, and fund our Lifespan.io campaign today!

MMTP — Major Mouse Testing Program.
http://majormouse.org

Is a project by the International Longevity Alliance.
http://longevityalliance.org

Subscribe: https://www.youtube.com/user/LifespanIO


According to modern science, aging is the accumulation of damage that the body cannot completely eliminate, due to the imperfections of its protection and repair systems. The good news is that the processes that constitute aging are amenable to medical intervention. We can slow down or even reverse some aspects of aging by the application of different therapies, preventing or blocking some of these processes.

Read more

Sea urchins are remarkable organisms. They can quickly regrow damaged spines and feet. Some species also live to extraordinary old ages and—even more remarkably—do so with no signs of poor health, such as a decline in regenerative capacity or an increase in age-related mortality. These ocean Methuselahs even reproduce as if they were still youngsters.

MDI Biological Laboratory Associate Professor James A. Coffman, Ph.D., is studying the of sea urchins in hopes that a deeper understanding of the process of regeneration, which governs the regeneration of aging tissues as well as lost or damaged body parts, will lead to a deeper understanding of the aging process in humans, with whom sea urchins share a close genetic relationship.

In a paper recently published in Aging Cell, a leading journal in the field of aging biology, with Andrea G. Bodnar, Ph.D., of the Bermuda Institute of Ocean Studies, the scientists shed new light on the aging process in sea urchins, raising the prospect that the physical decline that typically accompanies aging is not inevitable.

Read more

New method for precisely identifying and treating fractures.


You’ve injured your knee. A doctor straps a listening device to it, and the noises you hear coming out of it are cringe-worthy. “Crackle! Krglkrglkrgl! Snap!”

Your isn’t breaking; it’s only bending, and in the future, those sounds could help doctors determine whether the convalescing joint is healthy yet, or if it needs more therapy.

Research engineers at the Georgia Institute of Technology are developing a knee band with microphones and vibration sensors to listen to and measure the sounds inside the joint.

Read more