Toggle light / dark theme

BOISE, Idaho (AP) — Three types of potatoes genetically engineered to resist the pathogen that caused the Irish potato famine are safe for the environment and safe to eat, federal officials have announced.

The approval by the U.S. Environmental Protection Agency and the U.S. Food and Drug Administration late last week gives Idaho-based J.R. Simplot Company permission to plant the potatoes this spring and sell them in the fall.

The company said the potatoes contain only potato genes, and that the resistance to late blight, the disease that caused the Irish potato famine, comes from an Argentine variety of potato that naturally produced a defense.

Read more

Last week, the US Patent and Trademarks Office ruled on the most-watched patent proceeding of the 21st century: the fight for Crispr-Cas9. The decision was supposed to declare ownership of the rights to the revolutionary gene editing technique. But instead, the patent judge granted sorta-victories to each of the rival parties—a team from UC Berkeley and another with members from both MIT and Harvard University’s Broad Institute. That’s great for those groups (and their spin-off, for-profit gene editing companies with exclusive licenses). But it leaves things a bit murkier for anyone else who wants to turn a buck with gene editing.

The Crispr discoverers now have some authority over who gets to use Crispr, and for what. And while exclusive licenses aren’t rare in biotech, the scope of these do stand out: They cover all the 20,000-plus genes in the human genome. So this week, legal experts are sending a formal request to the Department of Health and Human Services. They want the federal government to step in and bring Crispr back to the people.

Crispr is new, but patent laws governing genetic engineering date back decades. In 1980, shortly after the Supreme Court ruled that genetically engineered microbes were patentable, Congress passed something called the Bayh-Doyle Act. The law gives permission for universities to patent—and license—anything their researchers invented with public funds, making it easier to put those inventions back in the hands of citizens.

Read more

Well, in my immediate family; we get science, math, and futurists talents from my dad. And, there does seem to be a pattern in my immediate family with this; not sure about others. Would love to know though.


SALT LAKE CITY — Most kids say they love their mom and dad equally, but there are times when even the best prefers one parent over the other. The same can be said for how the body’s cells treat our DNA instructions. It has long been thought that each copy — one inherited from mom and one from dad — is treated the same. A new study from scientists at the University of Utah School of Medicine shows that it is not uncommon for cells in the brain to preferentially activate one copy over the other. The finding breaks basic tenants of classic genetics and suggests new ways in which genetic mutations might cause brain disorders.

In at least one region of the newborn mouse brain, the new research shows, inequality seems to be the norm. About 85 percent of genes in the dorsal raphe nucleus, known for secreting the mood-controlling chemical serotonin, differentially activate their maternal and paternal gene copies. Ten days later in the juvenile brain, the landscape shifts, with both copies being activated equally for all but 10 percent of genes.

More than an oddity of the brain, the disparity also takes place at other sites in the body, including liver and muscle. It also occurs in humans.

Read more

Got OCD; check your genes for a mutation.


A new Northwestern Medicine study found evidence suggesting how neural dysfunction in a certain region of the brain can lead to obsessive and repetitive behaviors much like obsessive-compulsive disorder (OCD).

Both in humans and in mice, there is a circuit in the brain called the corticostriatal connection that regulates habitual and repetitive actions. The study found certain synaptic receptors are important for the development of this brain circuit. If these receptors are eliminated in mice, they exhibit obsessive behavior, such as over-grooming.

Read more

Orginal press: http://www.prweb.com/releases/2017/02/prweb14062199.htm

Bioquark, Inc., (http://www.bioquark.com) a life sciences company focused on the development of novel biologics for complex regeneration and disease reversion, and SC21 Biotech, (http://www.sc21bio.tech), a biotechnology company focused on translational therapeutic applications of autologous stem cell therapy, have announced a collaboration to focus on novel cellular reprogramming and production approaches for CCR5 Delta32 homozygous cord blood stem cells, for long-term control of HIV via transplantation.

“We are very excited about this collaboration with SC21 Biotech,” said Ira S. Pastor, CEO, Bioquark Inc. “The natural synergy of our cellular reprogramming tools and SC21 Biotech’s translational cell therapy experience, will make for a transformational opportunity in this area of HIV disease control.”

HIV-1 infection afflicts more than 35 million people worldwide. For individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. The only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation from a graft that carried the HIV-resistant CCR5-Delta32 homozygous mutation. The patient has remained without any evidence of HIV infection for more than 8 years after discontinuation of antiretroviral drug therapy.

However, identifying immune matched adult CCR5- Delta32 homozygous donors for a given patients is not readily feasible in part because the prevalence is in only about 0.8%–1% of individuals of northern European descent and much less in other ethnic groups, as well as the fact that for such transplants with adult cells there needs to be a very close HLA match between donor and patient.

In contrast, cord blood that is CCR5- Delta32 homozygous provides a major advantage in that much less stringent HLA matching is required between donor and patient. However, a technological method to cost effectively and industrially scale the production of such cells has been missing.

“We look forward to working closely with Bioquark Inc. on this exciting initiative,” said Mr. Paul Collier, Managing Director of SC21 Biotech. “The ability to apply Bioquark’s cellular reprogramming tools in order to produce industrial quantities of such precious cell lines will offer a much greater global penetration of this important therapeutic modality for HIV.”

“Bioquark has spent several years studying the evolutionarily perfected ability of bioactive moieties found in ooplasms to turn back biological time and re-set cellular regulatory state” said Dr. Sergei Paylian, Founder, CSO, and President, Bioquark Inc. “This unique initiative is one more step in our broad translation of such natural capabilities to control the progression of human diseases.”

About Bioquark, Inc.

Bioquark Inc. is focused on the development of natural biologic based products, services, and technologies, with the goal of curing a wide range of diseases, as well as effecting complex regeneration. Bioquark is developing both biological pharmaceutical candidates, as well as products for the global consumer health and wellness market segments.

About SC21 Biotech

SC21 Biotech is a novel a biotechnology company focused on translational therapeutic applications, as well as expedited, experimental access for “no option” patients, to a novel range of regenerative and reparative biomedical products and services, with the goal of reducing human degeneration, suffering, and death.

A new and extensive interview I did at New Atlas, including ideas about my #libertarian California Governor run. Libertarianism has many good ideas, but two core concepts are the non-aggression principle (NAP) and protection of private property rights—both of which I believe can be philosophically applied to the human body (and the body’s inevitable transhuman destiny of overcoming disease and decay with science and technology):


Zoltan Istvan is a transhumanist, journalist, politician, writer and libertarian. He is also running for Governor of California for the Libertarian Party on a platform pushing science and technology to the forefront of political discourse. In recent years, the movement of transhumanism has moved from a niche collection of philosophical ideals and anarcho-punk gestures into a mainstream political movement. Istvan has become the popular face of this movement after running for president in 2016 on a dedicated transhumanist platform.

We caught up with Istvan to chat about how transhumanist ideals can translate into politics, how technology is going to change us as humans and the dangers in not keeping up with new innovations, such as genetic editing.

New Atlas: How does transhumanism intersect with politics?

Istvan: For me you can never make any headway in the universe, or on planet Earth, if you don’t involve politics because so much money for innovation or research and development comes from the government and so many laws about what you can do. Genetic editing, chip implants, can you get a brain implant that makes you smarter than other people? These things are often directed by the government determining whether it’s illegal or not. You can either be thrown in jail or not thrown in jail – so you must have a political footprint, you must have attorneys on the ground, you must have that kind of legal position that can explain things in terms that a government will understand.

Read more

Rare breeds of chickens could soon come from entirely different types of hens. The University of Edinburgh’s Roslin Institute with help from US biotechnology company Recombinetics used gene editing techniques to create surrogate hens that grow up to produce eggs with all the genetic information of different breeds.

We’ve seen gene editing and transfer techniques used to create better yeast, bigger trees and even glowing pigs, among numerous other examples, but this is believed to be the first gene-edited bird to come out of Europe.

The team used a gene editing tool called TALEN (for transcription activator-like effector nucleases), which is similar to the more widely publicized CRISPR/Cas9, to delete part of a chicken gene called DDX4 that is related to fertility. Hens with this modification did not produce eggs but were healthy in all other ways.

Read more

Mantas from CellAge picks a winner for the iPhone Raffle Reward! ►Campaign Link: https://www.lifespan.io/campaigns/cellage-targeting-senescent-cells-with-synthetic-biology/ ►Subscribe:
►Reddit AMA: https://www.reddit.com/r/Futurology/comments/5hfmsl/cellage_ama_targeting_senescent_cells_with/


Our society has never aged more rapidly – one of the most visible symptoms of the changing demographics is the exponential increase in the incidence of age-related diseases, including cancer, cardiovascular diseases and osteoarthritis. Not only does aging have a negative effect on the quality of life among the elderly but it also causes a significant financial strain on both private and public sectors. As the proportion of older people is increasing so is health care spending. According to a WHO analysis, the annual number of new cancer cases is projected to rise to 17 million by 2020, and reach 27 million by 2030. Similar trends are clearly visible in other age-related diseases such as cardiovascular disease. Few effective treatments addressing these challenges are currently available and most of them focus on a single disease rather than adopting a more holistic approach to aging.

Recently a new approach which has the potential of significantly alleviating these problems has been validated by a number of in vivo and in vitro studies. It has been demonstrated that senescent cells (cells which have ceased to replicate due to stress or replicative capacity exhaustion) are linked to many age-related diseases. Furthermore, removing senescent cells from mice has been recently shown to drastically increase mouse healthspan (a period of life free of serious diseases).

Here at CellAge we are working hard to help translate these findings into humans!

CellAge, together with a leading synthetic biology partner, Synpromics, is going to develop synthetic promoters which are specific to senescent cells (SeneSENSE), as promoters that are currently being used to track senescent cells are simply not good enough to be used in therapies. The most prominently used p16 gene promoter has a number of limitations, for example. As our primary mission is to expand the interface between synthetic biology and aging research as well as drive translational research forward, we will offer senescence reporter assay to academics for free. We predict that in the very near future this assay will be also used as a quality control step in the cell therapy manufacturing process to make cell therapies safer!

Read more