Toggle light / dark theme

The success of a gene therapy for blindness caused by a genetic mutation paves the way for gene therapies which treat other forms of blindness as well as similar treatments which treat other diseases.


FDA approves novel gene therapy to treat patients with a rare form of blindness. The first gene therapy approved for inherited disease.

Read more

New view on mitochondrial DNA could put the brakes on mutations that drive diseases. Scientists perform landmark sequencing of mitochondrial DNA and discover surprising facts.


Summary: New view on mitochondrial DNA could help put the brakes on mutations that drive diseases. [Author: Brady Hartman. This article first appeared on LongevityFacts.]

DNA sequences between mitochondria inside a single cell are vastly different, reported scientists in the Perelman School of Medicine at the University of Pennsylvania. This discovery will help to illuminate the underlying mechanisms of diseases that start with mutations in mitochondrial DNA and provide clues about how patients might respond to specific treatments. The researchers published their findings in the journal Cell Reports this week.

Mutant Mitochondrial DNA

Mitochondria are the tiny organelles that produce energy inside our cells. We have two types of DNA in our bodies, the DNA inside the nucleus of our cells, called nuclear DNA – which stores the vast majority of our genetic code – and a separate DNA inside the mitochondria called mitochondrial DNA (mtDNA).

Read more

In a historic move, the Food and Drug Administration on Tuesday approved a pioneering gene therapy for a rare form of childhood blindness, the first such treatment cleared in the United States for an inherited disease.

The approval signals a new era for gene therapy, a field that struggled for decades to overcome devastating setbacks but now is pushing forward in an effort to develop treatments for haemophilia, sickle-cell anaemia, and an array of other genetic diseases.

Yet the products, should they reach patients, are likely to carry stratospheric prices – a prospect already worrying consumer advocates and economists.

Read more

Scientists have identified a mysterious genetic mutation that effectively negates the sensation of pain, enabling people with the rare anomaly to persevere effortlessly through extreme physical discomfort.

The gene variant – identified in an Italian family who feels almost no pain even when seriously injured – could help scientists find new treatments for chronic pain that mimic the family’s unusual gift.

“We have spent several years trying to identify the gene that is the cause of this,” molecular biologist James Cox from University College London told The Independent.

Read more

The genetic atlas revealed new information about health risks, ancient political borders, and the influence of Vikings.

Learn how your family history is connected to the human journey with National Geographic’s Geno 2.0 DNA ancestry kit.

A new “DNA atlas” of Ireland is revealing some of the surprising ways historic kingdoms have influenced populations on the island—and it offers the first genetic evidence that Vikings intermingled with ancient Irish peoples.

Read more

Brendan John Frey FRSC (born 29 August 1968) is a Canadian-born machine learning and genome biology researcher, known mainly for his work on factor graphs, the wake-sleep algorithm for deep learning, and using machine learning to model genome biology and understand genetic disorders. He founded Deep Genomics and is currently its CEO, and he is a Professor of Engineering and Medicine at the University of Toronto. He co-developed a new computational approach to identifying the genetic determinants of disease, was one of the first researchers to successfully train a deep neural network, and was a pioneer in the introduction of iterative message-passing algorithms.

Frey studied computer engineering and physics at the University of Calgary (BSc 1990) and the University of Manitoba (MSc 1993), and then studied neural networks and graphical models as a doctoral candidate at the University of Toronto under the supervision of Geoffrey Hinton (PhD 1997). He was an invited participant of the Machine Learning program at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK (1997) and was a Beckman Fellow at the University of Illinois at Urbana Champaign (1999).

Following his undergraduate studies, Frey worked as a Junior Research Scientist at Bell-Northern Research from 1990 to 1991. After completing his postdoctoral studies at the University of Illinois at Urbana-Champaign, Frey was an Assistant Professor in the Department of Computer Science at the University of Waterloo, from 1999 to 2001.

In 2001, Frey joined the Department of Electrical and Computer Engineering at the University of Toronto and was cross-appointed to the Department of Computer Science, the Banting and Best Department of Medical Research and the Terrence Donnelly Centre for Cellular and Biomolecular Research. From 2008 to 2009, he was a Visiting Researcher at Microsoft Research, Cambridge, UK, and a Visiting Professor in the Cavendish Laboratories and Darwin College at Cambridge University. Between 2001 and 2014, Frey consulted for several groups at Microsoft Research and acted as a member of its Technical Advisory Board.

In 2014, Frey co-founded Deep Genomics, a Toronto company that develops machine learning methods to model the deep biological architectures that relate genetic mutations to disease. The company’s goal is to bridge the genotype-phenotype gap, which is a pain point in genetic testing, pharmaceuticals, personalized medicine and health insurance.

——-
Facebook: https://www.facebook.com/agingreversed
Tumblr: http://agingreversed.tumblr.com
Twitter: https://twitter.com/Aging_Reversed

Read more

Full Interview ► https://goo.gl/YYdVUH
BioViva ► http://bioviva-science.com

Liz Parrish is the Founder and CEO of BioViva Sciences USA Inc. BioViva is committed to extending healthy lifespans using gene therapy. Liz is known as “the woman who wants to genetically engineer you,” she is a humanitarian, entrepreneur and innovator and a leading voice for genetic cures. As a strong proponent of progress and education for the advancement of gene therapy, she serves as a motivational speaker to the public at large for the life sciences. She is actively involved in international educational media outreach and sits on the board of the International Longevity Alliance (ILA). She is the founder of BioTrove Investments LLC and the BioTrove Podcasts which is committed to offering a meaningful way for people to learn about and fund research in regenerative medicine. She is also the Secretary of the American Longevity Alliance (ALA) a 501©(3) nonprofit trade association that brings together individuals, companies, and organizations who work in advancing the emerging field of cellular & regenerative medicine with the aim to get governments to consider aging a disease. Parrish received two kinds of injections, which were administered outside the United States: a myostatin inhibitor, which is expected to prevent age-associated muscle loss; and a telomerase gene therapy, which is expected to lengthen telomeres, segments of DNA at the ends of chromosomes whose shortening is associated with aging and degenerative disease.
——-
Facebook: https://www.facebook.com/agingreversed
Tumblr: http://agingreversed.tumblr.com
Twitter: https://twitter.com/Aging_Reversed

Read more