Toggle light / dark theme

2019 was nuts for neuroscience. I said this last year too, but that’s the nature of accelerating technologies: the advances just keep coming.

There’re the theoretical showdowns: a mano a mano battle of where consciousness arises in the brain, wildly creative theories of why our brains are so powerful, and the first complete brain wiring diagram of any species. This year also saw the birth of “hybrid” brain atlases that seek to interrogate brain function from multiple levels—genetic, molecular, and wiring, synthesizing individual maps into multiple comprehensive layers.

Brain organoids also had a wild year. These lab-grown nuggets of brain tissue, not much larger than a lentil, sparked with activity similar to preterm babies, made isolated muscles twitch, and can now be cloned into armies of near-identical “siblings” for experimentation—prompting a new round of debate on whether they’ll ever gain consciousness.

You heard about reversing the epigenetic clock 2.5 years? Living drugs? CAR T cells? Fight cancer? Here ya go.


Vision Weekend is the annual member gathering of Foresight Institute, a non-profit for advancing beneficial technologies for the long-term flourishing of life.

More info on speakers and program: https://foresight.org/vision-weekend-2019/.
Join Foresight Institute’s community: www.bit.ly/foresightnews

It’s 2050, and you’ve just arrived on Mars. Your first meal awaits: a plate of spaghetti marinara made from fresh vine-ripened tomatoes. Tough to imagine, right?

The idea that astronauts might enjoy the fresh, cherry-red fruits has seemed borderline absurd. Tomato plants, with their sprawling vines and bulbous fruits, take up space—valuable space. And they’re extremely finicky.

But now, scientists have developed a way to genetically modify cherry tomatoes so they grow in tighter bunches and take up less space. This could be a game changer as the push to grow vertical, rooftop gardens increases and as humanity stretches out past low-Earth orbit toward the moon, and eventually, Mars.

From insilico meddicine — the beginning of an AI healthcare revolution.


Poly Mamoshina on Machine Learning for small molecule drug discovery and the beginning of an AI healthcare revolution — interviewed at the Undoing Aging conference in Berlin 2019!

Polina Mamoshina is a senior research scientist at Insilico Medicine, Inc (www.insilico.com), a Baltimore-based bioinformatics and deep learning company focused on reinventing drug discovery and biomarker development and a part of the computational biology team of Oxford University Computer Science Department. Polina graduated from the Department of Genetics of the Moscow State University. She was one of the winners of GeneHack a Russian nationwide 48-hour hackathon on bioinformatics at the Moscow Institute of Physics and Technology attended by hundreds of young bioinformaticians. Polina is involved in multiple deep learning projects at the Pharmaceutical Artificial Intelligence division of Insilico Medicine working on the drug discovery engine and developing biochemistry, transcriptome, and cell-free nucleic acid-based biomarkers of aging and disease. She recently co-authored seven academic papers in peer-reviewed journals.

https://scholar.google.com/citations?user=YrLgl8gAAAAJ&hl=en

https://uk.linkedin.com/in/polymamoshina

https://cogx.co/speakers/polina-mamoshina/

Many thanks for watching!
Consider supporting SciFuture by:
a) Subscribing to the SciFuture YouTube channel: http://youtube.com/subscription_center?add_user=TheRationalFuture
b) Donating
- Bitcoin: 1BxusYmpynJsH4i8681aBuw9ZTxbKoUi22
- Etherium: 0xd46a6e88c4fe179d04464caf42626d0c9cab1c6b
- Patreon: https://www.patreon.com/scifuture
c) Sharing the media SciFuture creates: http://scifuture.org
Kind regards.
Adam Ford
- Science, Technology & the Future.

Nearly one in six deaths from prostate cancer could be prevented if targeted screening was introduced for men at a higher genetic risk of the disease, according to a new UCL-led computer modelling study.

Prostate cancer is the most common form of cancer in men with around 130 new cases diagnosed in the UK every day and more than 10,000 men a year dying as a result of the disease. However, unlike breast and there is currently no national programme for this disease in the UK.

A blood test that detects raised levels of the prostate-specific antigen (PSA) can be used to screen for . However, this test is not a reliable indicator as it does not accurately distinguish between dangerous cancers from harmless ones—leading to both unnecessary operations and missed cancers that are harmful.

P53 is the most famous cancer gene, not least because it’s involved in causing over 50% of all cancers. When a cell loses its p53 gene—when the gene becomes mutated—it unleashes many processes that lead to the uncontrolled cell growth and refusal to die, which are hallmarks of cancer growth. But there are some cancers, like kidney cancer, that that had few p53 mutations. In order to understand whether the inactivation of the p53 pathway might contribute to kidney cancer development, Haifang Yang, Ph.D., a researcher with the Sidney Kimmel Cancer Center—Jefferson Health probed kidney cancer’s genes for interactions with p53.

Earlier work found that PBRM1—the second most mutated gene in —could interact with p53. However, other researchers were unable to definitively show that it was truly an important mechanism in kidney cancer.

Rather than looking at the p53 protein itself, first author Weijia Cai a postdoc in Dr. Yang’s lab and other collaborators looked at an activated version of p53, one that is studded with an additional chemical marker—an —at many specific spots.

From the beginning of time, humankind has searched for the secret to a long life. Now science may have found an answer, in the form of molecular augury. The pattern of chemical chains that attach to the DNA in your cells—on-off switches known as epigenetic markers—can reveal how swiftly you are aging, and perhaps even how much longer you will live. While genetic testing might tell you where you came from, epigenetics promises a glimpse into the future. Now, a handful of companies are offering commercial blood or saliva tests based on the science of epigenetics—a chance to find out how old you truly are.


Companies claim they can now easily calculate your biological age. Should you take them up on it?

To that end, Fields decided to ask a Florida judge to grant him a warrant that would override the new policy, allowing him to search GEDmatch’s entire database, including users who hadn’t opted in — and Judge Patricia Strowbridge did just that, the detective announced at a recent police convention, according to the NYT.

Legal experts told the NYT that this appears to be the first time a judge has approved a DNA website warrant this broad, with New York University law professor Erin Murphy calling it “a huge game-changer.”

“The company made a decision to keep law enforcement out, and that’s been overridden by a court,” Murphy told the newspaper. “It’s a signal that no genetic information can be safe.”

Rejuvenation Roundup November 2019


Quite a number of readily understandable reviews were published this month, along with an X10 episode on epigenetic alterations; if you’re new to the biology of aging or want to introduce someone else to the topic with new material, this is a great time to start.

LEAF News

We will be returning to New York in 2020 for our third conference focused on aging research, investment, and biotech business. Judy Campisi, Aubrey de Grey, Hanadie Yousef, Steve Horvath, Andrei Gudkov, and Polina Mamoshina are among the speakers confirmed so far. Join the conference mailing list to stay informed as more details are announced.