Toggle light / dark theme

California Dreams Video 1 from IFTF on Vimeo.

INSTITUTE FOR THE FUTURE ANNOUNCES CALIFORNIA DREAMS:
A CALL FOR ENTRIES ON IMAGINING LIFE IN CALIFORNIA IN 2020

Put yourself in the future and show us what a day in your life looks like. Will California keep growing, start conserving, reinvent itself, or collapse? How are you living in this new world? Anyone can enter,anyone can vote; anyone can change the future of California!

California has always been a frontier—a place of change and innovation, reinventing itself time and again. The question is, can California do it again? Today the state is facing some of its toughest challenges. Launching today, IFTF’s California Dreams is a competition with an urgent challenge to recruit citizen visions of the future of California—ideas for what it will be like to live in the state in the next decade—to start creating a new California dream.

California Dreams calls upon the public look 3–10 years into the future and tell a story about a single day in their own life. Videos, graphical entries, and stories will be accepted until January 15, 2011. Up to five winners will be flown to Palo Alto, California in March to present their ideas and be connected to other innovative thinkers to help bring these ideas to life. The grand prize winner will receive the $3,000 IFTF Roy Amara Prize for Participatory Foresight.

“We want to engage Californians in shaping their lives and communities” said Marina Gorbis, Executive Director of IFTF. “The California Dreams contest will outline the kinds of questions and dilemmas we need to be analyzing, and provoke people to ask deep questions.”

Entries may come from anyone anywhere and can include, but are not limited to, the following: Urban farming, online games replacing school, a fast food tax, smaller, sustainable housing, rise in immigrant entrepreneurs, mass migration out of state. Participants are challenged to use IFTF’s California Dreaming map as inspiration, and picture themselves in the next decade, whether it be a future of growth, constraint, transformation, or collapse.

The grand prize, called the Roy Amara Prize, is named for IFTF’s long-time president Roy Amara (1925−2000) and is part of a larger program of social impact projects at IFTF honoring his legacy, known as The Roy Amara Fund for Participatory Foresight, the Fund uses participatory tools to translate foresight research into concrete actions that address future social challenges.

PANEL OF COMPETITION JUDGES

Gina Bianchini, Entrepreneur in Residence, Andreessen Horowitz

Alexandra Carmichael, Research Affiliate, Institute for the Future, Co-Founder, CureTogether, Director, Quantified Self

Bill Cooper, The Urban Water Research Center, UC Irvine

Poppy Davis, Executive Director, EcoFarm

Jesse Dylan, Founder of FreeForm, Founder of Lybba

Marina Gorbis, Executive Director, Institute for the Future

David Hayes-Bautista, Professor of Medicine and Health Services,UCLA School of Public Health

Jessica Jackley, CEO, ProFounder

Xeni Jardin, Partner, Boing Boing, Executive Producer, Boing Boing Video

Jane McGonigal, Director of Game Research and Development, Institute for the Future

Rachel Pike, Clean Tech Analyst, Draper Fisher Jurvetson

Howard Rheingold, Visiting Professor, Stanford / Berkeley, and theInstitute of Creative Technologies

Tiffany Shlain, Founder, The Webby Awards
Co-founder International Academy of Digital Arts and Sciences

Larry Smarr
Founding Director, California Institute for Telecommunications and Information Technology (Calit2), Professor, UC San Diego

DETAILS

WHAT: An online competition for visions of the future of California in the next 10 years, along one of four future paths: growth, constraint, transformation, or collapse. Anyone can enter, anyone can vote, anyone can change the future of California.

WHEN: Launch – October 26, 2010
Deadline for entries — January 15, 2011
Winners announced — February 23, 2011
Winners Celebration — 6 – 9 pm March 11, 2011 — open to the public

WHERE: http://californiadreams.org

For more information on the California Dreaming map or to download the pdf, click here.

Call for Essays:

The Singularity Hypothesis
A Scientific and Philosophical Assessment

Edited volume, to appear in The Frontiers Collection, Springer

Does an intelligence explosion pose a genuine existential risk, or did Alan Turing, Steven Hawking, and Alvin Toffler delude themselves with visions ‘straight from Cloud Cuckooland’? Should the notions of superintelligent machines, brain emulations and transhumans be ridiculed, or is it that skeptics are the ones who suffer from short sightedness and ‘carbon chauvinism’? These questions have remained open because much of what we hear about the singularity originates from popular depictions, fiction, artistic impressions, and apocalyptic propaganda.

Seeking to promote this debate, this edited, peer-reviewed volume shall be concerned with scientific and philosophical analysis of the conjectures related to a technological singularity. We solicit scholarly essays offering a scientific and philosophical analysis of this hypothesis, assess its empirical content, examine relevant evidence, or explore its implications. Commentary offering a critical assessment of selected essays may also be solicited.

Important dates:

  • Extended abstracts (500–1,000 words): 15 January 2011
  • Full essays: (around 7,000 words): 30 September 2011
  • Notifications: 30 February 2012 (tentative)
  • Proofs: 30 April 2012 (tentative)

We aim to get this volume published by the end of 2012.

Purpose of this volume

Central questions

Extended abstracts are ideally short (3 pages, 500 to 1000 words), focused (!), relating directly to specific central questions and indicating how they will be treated in the full essay.

Full essays are expected to be short (15 pages, around 7000 words) and focused, relating directly to specific central questions. Essays longer than 15 pages long will be proportionally more difficult to fit into the volume. Essays that are three times this size or more are unlikely to fit. Essays should address the scientifically-literate non-specialist and written in a language that is divorced from speculative and irrational line of argumentation. In addition, some authors may be asked to make their submission available for commentary (see below).

(More details)

Thank you for reading this call. Please forward it to individuals who may wish to contribute.

Amnon Eden, School of Computer Science and Electronic Engineering, University of Essex
Johnny Søraker, Department of Philosophy, University of Twente
Jim Moor, Department of Philosophy, Dartmouth College
Eric Steinhart, Department of Philosophy, William Paterson University

Dear Ray;

I’ve written a book about the future of software. While writing it, I came to the conclusion that your dates are way off. I talk mostly about free software and Linux, but it has implications for things like how we can have driverless cars and other amazing things faster. I believe that we could have had all the benefits of the singularity years ago if we had done things like started Wikipedia in 1991 instead of 2001. There is no technology in 2001 that we didn’t have in 1991, it was simply a matter of starting an effort that allowed people to work together.

Proprietary software and a lack of cooperation among our software scientists has been terrible for the computer industry and the world, and its greater use has implications for every aspect of science. Free software is better for the free market than proprietary software, and there are many opportunities for programmers to make money using and writing free software. I often use the analogy that law libraries are filled with millions of freely available documents, and no one claims this has decreased the motivation to become a lawyer. In fact, lawyers would say that it would be impossible to do their job without all of these resources.

My book is a full description of the issues but I’ve also written some posts on this blog, and this is probably the one most relevant for you to read: https://lifeboat.com/blog/2010/06/h-conference-and-faster-singularity

Once you understand this, you can apply your fame towards getting more people to use free software and Python. The reason so many know Linus Torvalds’s name is because he released his code as GPL, which is a license whose viral nature encourages people to work together. Proprietary software makes as much sense as a proprietary Wikipedia.

I would be happy to discuss any of this further.

Regards,

-Keith
—————–
Response from Ray Kurzweil 11/3/2010:

I agree with you that open source software is a vital part of our world allowing everyone to contribute. Ultimately software will provide everything we need when we can turn software entities into physical products with desktop nanofactories (there is already a vibrant 3D printer industry and the scale of key features is shrinking by a factor of a hundred in 3D volume each decade). It will also provide the keys to health and greatly extended longevity as we reprogram the outdated software of life. I believe we will achieve the original goals of communism (“from each according to their ability, to each according to their need”) which forced collectivism failed so miserably to achieve. We will do this through a combination of the open source movement and the law of accelerating returns (which states that the price-performance and capacity of all information technologies grows exponentially over time). But proprietary software has an important role to play as well. Why do you think it persists? If open source forms of information met all of our needs why would people still purchase proprietary forms of information. There is open source music but people still download music from iTunes, and so on. Ultimately the economy will be dominated by forms of information that have value and these two sources of information – open source and proprietary – will coexist.
———
Response back from Keith:
Free versus proprietary isn’t a question about whether only certain things have value. A Linux DVD has 10 billion dollars worth of software. Proprietary software exists for a similar reason that ignorance and starvation exist, a lack of better systems. The best thing my former employer Microsoft has going for it is ignorance about the benefits of free software. Free software gets better only as more people use it. Proprietary software is an inferior development model and an anathema to science because it hinders people’s ability to work together. It has infected many corporations, and I’ve found that PhDs who work for public institutions often write proprietary software.

Here is a paragraph from my writings I will copy here:

I start the AI chapter of my book with the following question: Imagine 1,000 people, broken up into groups of five, working on two hundred separate encyclopedias, versus that same number of people working on one encyclopedia? Which one will be the best? This sounds like a silly analogy when described in the context of an encyclopedia, but it is exactly what is going on in artificial intelligence (AI) research today.

Today, the research community has not adopted free software and shared codebases sufficiently. For example, I believe there are more than enough PhDs today working on computer vision, but there are 200+ different codebases plus countless proprietary ones. Simply put, there is no computer vision codebase with critical mass.

We’ve known approximately what a neural network should look like for many decades. We need “places” for people to work together to hash out the details. A free software repository provides such a place. We need free software, and for people to work in “official” free software repositories.

“Open source forms of information” I have found is a separate topic from the software issue. Software always reads, modifies, and writes data, state which lives beyond the execution of the software, and there can be an interesting discussion about the licenses of the data. But movies and music aren’t science and so it doesn’t matter for most of them. Someone can only sell or give away a song after the software is written and on their computer in the first place. Some of this content can be free and some can be protected, and this is an interesting question, but mostly this is a separate topic. The important thing to share is scientific knowledge and software.

It is true that software always needs data to be useful: configuration parameters, test files, documentation, etc. A computer vision engine will have lots of data, even though most of it is used only for testing purposes and little used at runtime. (Perhaps it has learned the letters of the alphabet, state which it caches between executions.) Software begets data, and data begets software; people write code to analyze the Wikipedia corpus. But you can’t truly have a discussion of sharing information unless you’ve got a shared codebase in the first place.

I agree that proprietary software is and should be allowed in a free market. If someone wants to sell something useful that another person finds value in and wants to pay for, I have no problem with that. But free software is a better development model and we should be encouraging / demanding it. I’ll end with a quote from Linus Torvalds:

Science may take a few hundred years to figure out how the world works, but it does actually get there, exactly because people can build on each others’ knowledge, and it evolves over time. In contrast, witchcraft/alchemy may be about smart people, but the knowledge body never “accumulates” anywhere. It might be passed down to an apprentice, but the hiding of information basically means that it can never really become any better than what a single person/company can understand.
And that’s exactly the same issue with open source (free) vs proprietary products. The proprietary people can design something that is smart, but it eventually becomes too complicated for a single entity (even a large company) to really understand and drive, and the company politics and the goals of that company will always limit it.

The world is screwed because while we have things like Wikipedia and Linux, we don’t have places for computer vision and lots of other scientific knowledge to accumulate. To get driverless cars, we don’t need any more hardware, we don’t need any more programmers, we just need 100 scientists to work together in SciPy and GPL ASAP!

Regards,

-Keith

1: Extropian, as in “Transhumanists tend to believe that Kurzweil’s extropian Law of Accelerating Returns will ultimately trump the 2nd Law of Thermodynamics.”

2: Bemes, as in “By uploading her bemes, the transhumanist was able to create a mindfile to serve as a basis for a future cyber-conscious analog of herself.” The singular form, beme, refers to a digitally-inheritable unit of beingness (such as a single element of one’s mannerisms, personality, recollections, feelings, beliefs, attitudes and values) as in “The transhuman survivalist had a very strong beme for paranoia.”

3: Singularity, as in “The Singularity — that era, no more than a few decades hence, when transhumanists believe machine intelligence will merge with and surpass biological intelligence.”

4: Ectogenetic, as in “Many transhumanists look forward to growing replacements for all or part of their body via controlled differentiation of stem cells in an ex vivo ectogenetic process.”

5: Mindclone, as in “Transhumanists are often accepting of the notion that one identity can simultaneously operate across multiple physical and virtual instantiations, via wireless synchronization, with each such instantiation being a mindclone of a biological original mind.”

6: Vitology, as in “Some transhumanists believe biology is simply a subset of vitology, the study of self-replicating Darwinian code subject to mutation and Natural Selection, with the codes expressed in particular molecules for biology and more generally in differing voltage states for vitology.”

7: Beman, as in “A person created with bio-nanotechnology, a cyborg, a virtual person with a human mind, and a person who integrates electronics into their life are four examples of a bio-electronic human, also known as a beman.

8: Nanobot, as in “Transhumanists have a strong tendency to wish for an acceleration of the date when many problems could be solved with large numbers of microscopic, wirelessly networked, intelligent machines, each of which are called a nanobot.”

9: Techno-progressive, as in “Transhumanists tend to be socially-conscious libertarians, also known as techno-progressive, because they believe technology will solve most of the world’s problems.

10: Transhuman, as in “People who believe it is good to transcend our human biological inheritance, such as by modifying our DNA, our bodies or the substrate for our minds, and/or by leaving the earth to live in space habitats or on other celestial bodies, are considered transhuman.”

Abstract

J. Storrs Hall’s Weather Machine is a relatively simple nanofabricated machine system with significant consequences in politics and ethics.

After a brief technical description, this essay analyzes the ends, means, and circumstances of a feasible method of controlling the weather, and includes some predictions regarding secondary effects.


Article

When a brilliant person possesses a fertile imagination and significant technical expertise, he or she is likely to imagine world-changing inventions. J. Storrs Hall is the epitome of those geniuses, and his Utility Fog [1] and Space Pier [2] are brilliant engineering designs that will change the world once they are reduced to practice. His most recent invention is the Weather Machine [3], which has been examined by none other than Robert Freitas and found to be technically reasonable—-though Freitas may have found an improved method for climate control that avoids some of the problems discussed below [4].

The Hall Weather Machine is a thin global cloud consisting of small transparent balloons that can be thought of as a programmable and reversible greenhouse gas because it shades or reflects the amount of sunlight that hits the upper stratosphere. These balloons are each between a millimeter and a centimeter in diameter, made of a few-nanometer thick diamondoid membrane. Each balloon is filled with hydrogen to enable it to float at an altitude of 60,000 to 100,000 feet, high above the clouds. It is bisected by an adjustable sheet, and also includes solar cells, a small computer, a GPS receiver to keep track of its location, and an actuator to occasionally (and relatively slowly) move the bisecting membrane between vertical and horizontal orientations. Just like with a regular high-altitude balloon, the heavier control and energy storage systems would be on the bottom of the balloon to automatically set the vertical axis without requiring any energy. The balloon would also have a water vapor/hydrogen generator system for altitude control, giving it the same directional navigation properties that an ordinary hot-air balloon has when it changes altitudes to take advantage of different wind directions at different altitudes.

Four versions of balloons are possible, depending on nature of the bisecting membrane.

  • Version 1. Transparent/Opaque: The bisecting membrane is opaque, and rotates from the horizontal to the vertical in order to control the amount of solar radiation that it allows through (the membrane might be replaced by a immobile liquid crystal that has two basic states: transparent and opaque).
  • Version 2. Emissivity Control: The membrane is white on one side, black on the other. When it is horizontal, either side can be presented upwards; white to scatter the solar radiation into space, black to absorb it into the upper atmosphere.
  • Version 3. Reflection Control: The membrane is black on one side, with a reflective metallic coating on the other. This can direct solar energy in specific directions to increase the effectiveness of solar farms, or to steer hurricanes. Another feature of this version is that it enables the multiple reflection of light from sunlit to dark areas.
  • Version 4. Advanced Photon Control: The balloon would be filled with an aerogel-density metamaterial that could not only control reflectivity via diffraction, but also control the frequency and phase of outgoing photons (with or without stimulated emission). Technically, designing and controlling these kinds of balloons would be a magnitude or two more complex than the earlier versions.

What is impressive about the Weather Machine is that by controlling a tenth of one percent of solar radiation is enough to force global climate in any direction we want. One percent is enough to change regional climate, and ten percent is enough for serious weather control.


The Problems

Every human-designed system has unintended bugs, and may cause negative consequences. That is why we have professional engineering societies, non-profit standards organizations, and government bureaucracies—to help protect the public. There is, therefore, some concern that the Weather Machine will accidentally cause catastrophic weather. However, given the accuracy of weather predictions and global warming models, and the slow movement of masses of air, and the fact that humans are in the loop (and in an emergency, could use a failsafe mode to force all the balloons to drop from the sky), the danger of accidental harm is minimal. At any rate, this article is more concerned with the ethical issues, with accidental unintended consequences to be examined elsewhere.

Many people would be happy to stop global warming, though others (currently living in Siberia or Iceland) might be happier without brutally cold winters. This level of climate control raises some problematic issues that may pit one group of people against another. The intended results could be taken care of the same way we normally take of similar issues in a representative democracy—we vote. This sounds nice, except that we’re not just talking about the United States (or any single nation), but the entire world. And we all know how well the United Nations handles its affairs. Perhaps deciding whether or not we want global warming is a small enough decision that the U.N. can handle it. If not, we can always rely on the world government that evil geniuses want to run, and that conspiracy theorists worry about.

Within the USA, trial lawyers would be especially interested in unintended effects, including trivial ones like rain on parades, or more serious ones like floods and tornadoes. The tremendous inefficiency of this legal nightmare might be meliorated by a “weather tax” that would fund a program to recompense people who are willing to put up with bad weather.

The more advanced versions of balloons are problematic because then the Weather Machine wouldn’t just control the intensity of solar and terrestrial radiation, but could also redirect and concentrate energy. In addition to increasing the effectiveness of solar farms, this would give more powerful and precise control over the weather. Unfortunately, energy concentration is exactly the capability that transforms the Weather Machine into an awesome weapon of mass destruction. Concentrated solar energy has not been used much since 212 BCE [5] when Archimedes used it to set fire the Roman ships that were attacking his city-state of Syracuse. However, the global coordination of the reflective Weather Machine allows bouncing concentrated solar energy around the globe, making it possible to set cities on fire. By fire, I mean the type of fire caused by dropping a nuclear bomb per second for as long as you want. The potential for abuse is rather large.

The most advanced version of the balloon is even better or worse—it contains an aerogel-density (i.e. extremely light and porous) programmable metamaterial that controls the frequency, direction, and phase of the reflected or transmitted radiation. Fully deployed, such a Weather Machine could become a planet-sized telescope—or laser. Small portions of such a system could be used as an effective missile defense system. Configured as a planetary laser, it might be able to defend Earth against stray asteroids such as Apopois, which is due for a flyby in 2029 (and might impact in 2036—especially if some terrorist group places an ion motor on it). Also, a planetary laser could push fairly large rockets rather quickly to Alpha Centari. But if you thought Version 3 was a weapon of mass destruction, Version 4 makes them, and the Transformers look like children’s toys (No wait—that’s what they are ). Optical divergence (currently 1 miliradian for commercially available lasers) will not keep planets from shooting at each other and frying them in their orbits, but the lack of energy density will—unless the balloons can store energy. On the other hand, even primitive laser focusing mechanisms will work fine for lunar infighting.

Given the almost unimaginable weaponization of the Hall Weather Machine, an important reaction is to ask if there any defenses against them. There are two types: those that attack the control algorithms (i.e. cyberware attacks) and those that physically attack the balloons, such as swarms of hunter-killer balloons or larger high-flying “carnivores”. In addition, there are some de-weaponization strategies that will be discussed below.


Ethical Issues

In some ways, ethics is like engineering–solving big problems is most easily done by splitting the problem in to smaller pieces. This means that the best way to determine the ethics of any action (such as building and operating a weather machine) is to determine the ethical considerations of each of the ends, means, and circumstances.

As far as “ends” are concerned, the weather machine passes with flying colors, if nothing else because it can fix global warming (or impending ice ages). Depending on a number of variables, we might even increase the number of nice weekends and increase the biome sizes of certain species.

One counter to these benefits claims that by controlling the weather we would be playing God and that the Weather Machine is equivalent to eating from the Tree of Knowledge of Good and Evil. In my view, if God didn’t like us messing with technology, then He should have let us know a long time ago. At any rate, the Bible doesn’t speak against technology per se. Admittedly, the Bible’s tower of Babel story does condemn the pride and arrogance that may result from technology, but that is another story.

A non-theistic (but just as religious) counter to the main intent of the weather machine is made by deep ecology environmentalists. They often claim that controlling the weather is unnatural, that Mother Nature bats last, or that the very idea of weather control is the reason that the global human population should be reduced to the low millions. These sort of arguments represent metaphysical differences regarding the value of individual human beings and the stewardship role we should have with the environment, and I’m not sure how we can address those issues in a book, much less in 3,500 words or less.

The “means” judges the actual methods used to control the climate and the weather. In this case, modulating the Sun’s energy with many small, high-altitude balloons seems ethically neutral. Even the transformation of a 100 million tons of carbon into diamondoid balloons is ethically neutral (unless one gets the carbon from the living bodies of endangered animals, pre-born fetuses, ethnic minorities, or other humans). By some viewpoints, the sequestering of 100 million tons of atmospheric carbon would be considered virtuous (except that this particular sequestration makes the global warming problem go away, to be possibly replaced by bigger ones).

The ethical analysis leaves “circumstances” as the remaining issue, and here is where things get complicated. Circumstances include things like unintended (especially foreseeable) and secondary consequences, such as whether the means or the end may lead to other evils. In general, a consequentialist argument would likely accept some small risk of some harm, and might accept mechanisms (like lawsuits or something more efficient) to provide feedback to fix any inequities. But this is where things get really complicated.

The first possibility, and most often raised, is that building and operating the Weather Machine might result in severe, unpredictable, unintended consequences. There are a few classes of these consequences, the most obvious centered on out-of-control superstorms or droughts. After all, we aren’t that great at predicting hurricane paths. On the other hand, this is because hurricane paths are inherently unstable—precisely because we don’t have any weather control. If we take a car out to the Bonneville salt flats, tie a car’s steering wheel absolutely straight, and then put a brick on the pedal, we cannot predict whether it will eventually circle left or right. But we allow cars on the road all the time precisely because we have such good feedback and control systems (well, except when they’re getting home late on a Saturday night).

Increased predictability would ameliorate the unintended weather problem, and could be reached by using altitude control (and differently-directed winds) for the balloons to remain over a particular piece of land. Then many tests could be run better predict possible harms and to lower the risk of them ever happening. In general, almost all accidental problems caused by a misbehaving Weather Machine (including computer viruses, rogue controllers, broken balloons, and the environmental toxicology of a million tons of inert diamond falling all over the earth) can be ameliorated by good design, adequate testing, and accurate modeling [6].

Others classes of severe, unintended consequences are secondary effects in the environment, the world economy, politics, and other areas. For example, by successfully moving heat from the tropics to the northern areas, we might turn off the Gulf Stream and other important ocean currents? How will the stock market react to California constantly selling it’s bad weather to Michigan? How will a totalitarian tropical country react if Iceland buys 20% of their neighbors’ sunlight for a much higher price than for theirs?

A second possibility is that the Weather Machine is impossible, and working on it may be a waste of money that could be better spend on more worthwhile projects. Given our knowledge of physics, however, this is unlikely. A caveat is that it will be a race to 2030, when diamond mechanosynthesis should be able to crank out the 100 million tons (the equivalent of 100 miles of freeway) of diamond balloons, and when the worst-case scenarios predict the beginning of serious negative effects of anthropogenic carbon [7]) . Will the Hall Weather Machine be built in time to stop Florida from being inundated by the ocean? The answer depends on when nanosystems will achieve top-down bootstrapping or bottom-up Turing equivalence (which is a technical topic for another time).

A third possibility—if the balloons are not location-controllable—might occur if a nation doesn’t want a foreign nation’s balloons over its territory. The obvious hostile response would be to build hunter-killer balloons to destroy any invaders, as this seems to be permitted by current concepts of sovereignty. Such an arms race could (and probably will) escalate ad infinitum, but open source hardware and software might help prevent it. Any military or intelligence personnel (of any country) would freak at the idea of handing the keys to a weapon of mass destruction to the public, but that may be the only viable solution if the control algorithm works using genetic or market mechanisms — maybe like American Idol or Wikipedia. After all, distributed systems should have distributed control systems. Imagine the balloons controlled by many different radio frequencies with a many different authentication algorithms with open source software. Unfortunately, if such public control is our solution against weather weaponization, we will still need to worry about the “tragedy of commons” and “not in my backyard” secondary effects.

There are other issues of international policy. Suppose we want more sunlight in the Dakotas for growing crops. We could buy it from poor tropical countries, or take it from international ocean territories, where it might affect other countries. Depending on the state of the art and it’s acceleration, but especially at the beginning, it is likely that only rich countries will be able to build Weather Machines. More certainly, only rich countries will be able to fund the early experiments to understand what large numbers of balloons will actually do.

Some might object that knowledge is free and can travel anywhere via the Internet. This is true, but consider the BP disaster. Technical expertise on underwater drilling is international; marine science is international; the disaster receiving tons of press coverage; and yet there is large disagreement within the largely free scientific community about the importance of the spill, how long it will take to clean up, etc. In contrast, connecting a large base of nanofactories to the Internet will enable the global spread of atomically-precise physical devices (such as balloons) in seconds, whether or not the experiments are ever done.

A fourth possibility is that the Weather Machine could be used as a weapon of mass inconvenience—a means of unjust coercion by making possible the threat of bad weather. But the ethics of this application use the same principles as the ethics regarding weapons of mass destruction. I have already pointed out the possible use of the Weather Machine as a weapon—the ethical issues surrounding the more advanced versions of the Weather Machine are basically the same as those concerning weapons of mass destruction, though amplified somewhat by their power (tens of megatons of TNT equivalents per second) and precision of control (+/- one degree Fahrenheit).

Fifth, there is the possibility that psychologically, being in control of the weather is not good for developing character. What if human beings are supposed to cower in their caves when lightning and blizzards strike? After all, that is how we evolved, and there are many things we enjoy that are bad for us [8]. Perhaps having so much control and power over the vicissitudes of life is psychologically bad for us. For evidence, look at the rates of depression in advanced nations.

Finally, what is the cost of not building a Weather Machine? If the cost drops low enough, some nation with the chutzpah will build one. And if they are at all successful, the rest of the world will jump in. But what will the cost be if they design it wrong?

Are the Ethics of the Hall Weather Machine Relevant?

The main problem with thinking about the ethics of the Hall Weather Machine is that by the time we can build 100 million tons of atomically precise anything, controlling the weather is going to be the least of our problems. This is because the nanotechnology revolution will bring about a new set of big, hairy problems—some of which I’ve written about elsewhere [9][10], but I fear that most of them we can’t even imaging yet.

May we live in interesting times!

Tihamer Toth-Fejel, MS
General Dynamics Advanced Information Systems
Michigan Research and Development Center

Acknowledgements

Thanks to James Bach and Chris Dodsworth for valuable contributions.



Footnotes

[1] J. Storrs Hall, Utility Fog: The Stuff that Dreams are Made Of, http://autogeny.org/Ufog.html

[2] J. Storrs Hall, The Space Pier: A hybrid Space-launch Tower concept, http://autogeny.org/tower/tower.html

[3] J. Storrs Hall, The Weather Machine, (transcript from Global Catastrophic Risks 2008 conference, posted by Jeriaska on December 20th, 2008), http://www.acceleratingfuture.com/people-blog/?p=2637

[4] Robert A. Freitas, Diamond Trees (Tropostats): A Molecular Manufacturing Based System for Compositional Atmospheric Homeostasis, 2010 IMM Report 43, 10 February 2010; http://www.imm.org/Reports/rep043.pdf

[5] Before the Christian Era smile

[6] The details will be examined elsewhere (as time permits).

[7] Coincidentally, it is also when the USA Social Security System is supposed to collapse.

[8] “The killer app for medical nanotechnology will be compensating for poor lifestyle choices like overeating and indiscriminate sex—i.e. diabetes II and AIDS” — a grad student at the 2010 Gordon Conference on Nanostructure Fabrication.

[9] T. Toth-Fejel, “Humanity and Nanotechnology”. National Catholic Bioethics Quarterly, V4N2, Summer 2004.

[10] T. Toth-Fejel, “A Few Lesser Implications of Nanofactories: Global Warming is the least of our Problems.” Nanotechnology Perceptions, March 2009.

(End of series. For previous topics please see parts I-IX)

Power plants. Trees could do a lot, as we have seen — and they’re solar powered, too. Once trees can suck metals from the soil and grow useful, shaped objects like copper wire, a few more levels of genetic engineering could enable the tree to use this copper wire to deliver electricity. Since a tree is already, now, a solar energy converter, we can build on that by having the tree grow tissues that convert energy into electricity. Electric eels can already do that, producing enough of a jolt to be lethal to humans. Even ordinary fish produce small amounts of electricity to create electric fields in the water around them. Any object nearby disrupts the field, enabling the fish to tell that something is near, even in total darkness. We may never be able to plug something into a swimming fish but we can already make batteries out of potatoes. So why not trees that grow into electricity providers all by themselves? It would be great to be able to plug your electrical devices into a tree (or at least a socket in your house that is connected to the tree). Then you would no longer need to connect to the grid, purchase solar panels, or install a windmill. You would, however, need to keep your trees healthy and vigorous! Tree care specialists would become a highly employable occupation.

Greening the desert. The Sahara and various other less notorious but still very dry deserts around the world have plenty of sand and rocks. But they don’t have much greenery. The main problem is lack of water. Vast swaths of the Sahara, for example, are plant free. It’s just too dry. However this problem is solvable! Cacti and other desert plants could potentially extract water from the air. Plants already extract carbon dioxide molecules from the air. Even very dry air contains considerable water vapor, so why not extract water molecules too. Indeed, plants already transport water molecules in the ground into their roots, so is it really such a big step to do the same from the air? Tillandsia (air plant) species can already pull in water with their leaves, but it has to be rain or other liquid water. Creating plants that can extract gaseous water vapor from the air in a harsh desert environment would require sophisticated genetic engineering, or a leap for mother nature, but it is still only the first step. Plants get nutrients out of the soil by absorbing fluid that has dissolved them, so dry soil would be a problem even for a plant that contained plenty of water pulled from the air. Another level of genetic engineering or natural evolution would be required to enable them to secrete fluid out of their roots to moisten chunks of soil to dissolve its minerals, and reabsorb the now nutritious, mineral-laden liquid back into their roots.

Once this difficult task is accomplished, whether by natural evolution in the distant future or genetic engineering sooner, things will be different in the desert. Canopies of vegetation that hide the ground will be possible. Thus shaded and sheltered, the ground will be able to support a much richer ecosystem of creatures and maybe even humans than is currently the case in deserts. One of Earth’s harshest environments would be tamed.

Phyto-terraforming. To terraform means to transform a place into an Earth-like state (terra is Latin for Earth). Mars for example is a desert wasteland, but it once ran with rivers, and it would be great if the Martian surface was made habitable — in other words, terraformed. Venus might be made habitable if we could only get rid of its dense blanket of carbon dioxide, which causes such a severe greenhouse effect that its surface is over 800 degrees Fahrenheit, toasty indeed. And why not consider terraforming inhospitable terrain right here on earth, like the Sahara desert, or Antarctica. Phyto-terraforming is terraforming using plants. Actually plants are so favored for this task that when people discuss terraforming, they usually mean phyto-terraforming. Long ago, plants did in fact terraform the Earth, converting a hostile atmosphere with no oxygen but plenty of carbon dioxide into a friendly one with enough oxygen that we can comfortably exist. Plants worked on Earth, and might work on Mars or even Venus, but not on the moon. The reason is that plants need carbon dioxide and water. Venus has these (and reasonable temperatures) high in the atmosphere, suggesting airborne algae cells. Mars is a more likely bet as it has water (as ice) available to surface-dwelling plants at least in places.

If Mars is the most likely candidate for phyto-terraforming, what efforts have been made to move in that direction? A first step has been to splice genes into ordinary plants from an organism that lives in hot water associated with deep ocean thermal vents. This organism is named Pyrococcus furiosus (Pyro- means fire in Greek, coccus refers to ball-shaped bacteria, hence “fireball”). Pyrococcus is most comfortable living at about the boiling point of water and can grow furiously, double its population in 37 minutes. It has evolved genes for destroying free radicals that work better than those naturally present in plants. Free radicals are produced by certain stressors in plants (and humans), cause cell damage, and can even lead to death of the organism. By splicing such genes into the plant Arabidopsis thaliana, the experimental mouse of plant research, this small and nondescript-looking plant can be made much more resistant to heat and lack of water. These genes have also been spliced into tomatoes, which could help feed future colonists. Of course Mars requires cold, not heat tolerance, but the lack of water part is a good start. The heat and drought parts might be useful for building plants to terraform deserts here on Earth, bringing terraforming of Earth deserts a couple of steps closer. With several additional levels of genetic modification, we might eventually terraform Mars yet.

Recommendations

When the advances described here are likely to happen would be good to know. Will they occur in your lifetime? Your grandchildren’s? Thousands or millions of years into the future? If the latter, there is not much point in devoting precious national funds to help bring them about, but if the former, it might be worth the expense of hurrying the process along. To determine the likely timing of future technological advances, we need to determine the speed of advancement. To measure this speed, we can look at the rate at which advances have occurred in the past, and ask what will happen in the future if advances continue along at the same rate. This approach is influential in the modern computer industry in the guise of “Moore’s Law.” However it was propounded at least as early as about 2,500 years ago, when Chinese philosopher Confucius is said to have noted, “Study the past if you would divine the future.” It would be nice to know when we can expect to grow and eat potatoes with small hamburgers in the middle, pluck nuggets of valuable metals from trees, power our homes by plugging into electricity-generating trees growing in our back yards, or terraform Mars.

Opening the floodgates of genetic engineering innovation. Properly regulated to optimally benefit society, genetic engineering of plants has enormous potential, from better and better-tasting food to growing amazing things on trees. However governmental regulation is currently suppressing such advances. Preparing applications to government regulatory agencies for permission to commercially grow genetically engineered plants currently costs many millions of dollars in many countries. Thus only genetic modifications to major commodity crops like corn and soy are generally cost-effective to commercialize. Worse, only big agribusinesses can afford the costs. And why should they object? After all, who needs small, game-changing startup companies moving in, upending the status quo, creating new economic growth and value with new kinds of crops, and generally making life complicated for the giant agribusinesses? Simpler just to keep the costs of applying for permission to grow so high that such upstarts are kept out of the picture. That way predictable profits flow in even if, overall, innovation and the consequent economic expansion is suppressed. But you can’t blame the giants, which are legally obligated to serve the interests of their shareholders. It is illegal for a corporation in the US to further the interests of society at substantial expense to its shareholders! Governments should regulate commercialization of genetically engineered crops optimally, protecting the world from harmful frankenplants while promoting exciting, progressive and beneficial crop innovations.

References

“We may never be able to plug something into a swimming fish, but we can already make batteries out of potatoes.” A. Golberg, H. D. Rabinowitch, and B. Rubinsky, Zn/Cu-vegetative batteries, bioelectrical characterizations, and primary cost analyses, Journal of Renewable Sustainable Energy (2010), Vol. 2, Issue 3, http://jrse.aip.org/jrsebh/v2/i3/p033103_s1, doi:10.1063/1.3427222.

“This organism is named Pyrococcus furiosus…”: G. Fiala and K. O. Stetter, Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C, Archives of Microbiology (June 1986), vol. 145, no. 1, pp. 56–61.

“By splicing such genes into the plant Arabidopsis thaliana…this small and nondescript-looking plant can be made much more resistant to heat and lack of water.” W. F. Boss and A. M. Grunden, Redesigning living organisms to survive on Mars, NASA Institute for Advance Concepts Annual Meeting (2006), http://www.niac.usra.edu/files/library/meetings/annual/oct06/1194Boss.pdf

“They have also been spliced into tomatoes, which could help feed future colonists.” W. Boss, http://www.cals.ncsu.edu/plantbiology/BossLab/hfiles/overview.html, 5/29/10.

Will our lumbering industrial age driven information age segue smoothly into a futuristic marvel of yet to be developed technology? It might. Or take quantum leaps. It could. Will information technology take off exponentially? It’s accelerating in that direction. The way knowledge is unraveling its potential for enhancing human ingenuity, the future looks bright indeed. But there is a problem. It’s that egoistic tendency we have of defending ourselves against knowing, of creating false images to delude ourselves and the world, and of resolving conflict violently. It’s as old as history and may be an inevitable part of life. If so, there will be consequences.

Who has ever seen drama/comedy without obstacles to overcome, conflicts to confront, dilemmas to address, confrontations to endure and the occasional least expected outcome? Just as Shakespeare so elegantly illustrated. Good drama illustrates aspects of life as lived, and we do live with egoistic mental processes that are both limited and limiting. Wherefore it might come to pass that we who are of this civilization might encounter an existential crisis. Or crunch into a bottleneck out of which … will emerge what? Or extinguish civilization with our egoistic conduct acting from regressed postures with splintered perception.

What’s least likely is that we’ll continue cruising along as usual.

Not with massive demographic changes, millions on the move, radical climate changes, major environmental shifts, cyber vulnerabilities, changing energy resources, inadequate clean water and values colliding against each other in a world where future generations of the techno-savvy will be capable of wielding the next generation of weapons of mass destruction.

On the other hand, there are intelligent people passionately pursuing methods of preventing the use of weapons, combating their effects and securing a future in which these problems mentioned above will be solved, and also working towards an advanced civilization.

It’s a race against time.

In the balance hangs nothing less than the future of civilization.

The danger from technology is secondary.

As of now, regardless of theories of international affairs, in one way or another, we inject power into our currency of negotiation, whether it be interpersonal or international, for after all, power is privilege, hard to give up, especially after getting a taste of it, and so we’ll quarrel over power, perhaps fight. Why deny it? The historical record is there for all to see. As for our inner terrors, our tendency to present false egoistic images to the world and of projecting our secret socially unacceptable fantasies on to others, we might just bring to pass what we fear and deny. It’s possible.

Meantime there are certain simple ideas that remain timeless: For example, as infants we exist at the pleasure of parents, big hulks who pick us up and carry us around sometimes lovingly, sometimes resentfully, often ambivalently, and to be sure many of us come to regard Authority with ambivalence. As Authority regards the dependent. A basic premise is that we all want something in a relationship. So what do we as infants want from Authority? How about security in our exploration of life? How about love? If it’s there we don’t have to pay for it. There are no conditions attached. Life, however, is both complicated and complex beyond a few words, and so we negotiate in the ‘best’ way we have at our disposal, which in the early stages of life are non-verbal intuitive methods that in part enter this life with us, genetically determined, epigenetically determined and in part is learned, but once adopted, a certain core approach becomes habitual, buried deeply under layers of later learned social skills, skills that we employ in our adult lives. These skills are however relatively on the surface. Hidden deep inside are secret desires, unfulfilled fantasies, hidden impulses that wouldn’t make sense in adult relationships if expressed openly in words.

It has been said repeatedly that crisis reveals character. Most of the time we get by in crisis, but we each have a ‘breaking point,’ meaning that under severe enduring stress we regress at a certain point, at which time we’ll abandon sophisticated social skills and a part of us will slip into infantile mode, not necessarily visible on the outside. It varies. No one can claim immunity. And acting out of infantile perception in adult situations can have unexpected consequences depending on the early life drama. Which makes life interesting. It also guarantees an interesting future.

Meantime scientists clarify the biology of learning, of short term memory, of long term memory, of the brain working as a whole, of ‘free will’ as we imagine it, but regardless of future directions, at this time we need agency on the personal and social level so as to help stabilize civilization. By agency I mean responsibility for one’s actions. Accountability, including in the face of dilemmas. Throughout the course of our lives from beginning to end we encounter dilemmas.

Consider the dilemmas the Europeans under German occupation faced last century. I use the European situation as an illustration or social paradigm, not to suggest that this situation will recur, nor to suggest that any one ethnic group will be targeted in the future, but I do suggest that if a global crisis hits, we’ll confront moral dilemmas, and so we can learn from those relatively few Europeans who resolved their dilemmas in noble ways, as opposed to the majority who did nothing to help the oppressed.

If a European in German occupied territory helped a Jew he or she and family would be in danger of arrest, torture and death. How about watching one’s spouse and children being tortured? On the other hand, if she or he did not help they would be participating in murder and genocide, and know it. Despite the danger, certain people from several European countries helped the Jews. According to those who interviewed and wrote about the helpers, (see references listed below) the helpers represented a cross section of the community, that is, some were uneducated laborers, some were serving women, some were formally educated, some were professionals, some professed religious convictions, some did not. Well then, what if anything did these noble risk takers have in common? What they shared in common was this: They saw themselves as responsible moral agents, and, acting on an internal locus of moral responsibility, they each acted on their knowledge and compassion and did the ‘right thing.’ It came naturally to them. But doing the ‘right thing’ in the face of life threatening dilemma does not come naturally to everyone. Fortunately it is a behavior that can be learned.

Concomitant with authentic learning, according to research biologists, is the production of brain chemicals that in turn cultivate structural modification in brain cells. A self reinforcing feedback system. In short, learning is part of a dynamic multi-dimensional interaction of input, output, behavioral change, chemicals, structural brain changes and complex adaptation in systems throughout the body. None of which diminishes the idea that we each enter this life with certain desires, potential and perhaps roles to act out, one of which for me is to improve myself.

Good news! I not only am, I become.

Finally, I list some 20th century resources that remain timeless to this day:

Millgram, S. Obedience to Authority: An Experimental View. Harper & Row. 1974.

Oliner, Samuel P. & Pearl. The Altruistic Personality: Rescuers of Jews in Nazi Europe. Free Press, Division of Macmillan. 1998

Fogelman, Eva. Conscience & Courage Anchor Books, Division of Random House. 1994

Block, Gay & Drucker, Malka. Rescuers: Portraits of Moral Courage in the Holocaust. Holms & Meier Publishers, 1992

Posted by Dr. Denise L Herzing and Dr. Lori Marino, Human-Nonhuman Relationship Board

Over the millennia humans and the rest of nature have coexisted in various relationships. However the intimate and interdependent nature of our relationship with other beings on the planet has been recently brought to light by the oil spill in the Gulf of Mexico. This ongoing environmental disaster is a prime example of “profit over principle” regarding non-human life. This spill threatens not only the reproductive viability of all flora and fauna in the affected ecosystems but also complex and sensitive non-human cultures like those we now recognize in dolphins and whales.

Although science has, for decades, documented the links and interdependence of ecosystems and species, the ethical dilemma now facing humans is at a critical level. For too long have we not recognized the true cost of our life styles and priorities of profit over the health of the planet and the nonhuman beings we share it with. If ever the time, this is a wake up call for humanity and a call to action. If humanity is to survive we need to make an urgent and long-term commitment to the health of the planet. The oceans, our food sources and the very oxygen we breathe may be dependent on our choices in the next 10 years.

And humanity’s survival is inextricably linked to that of the other beings we share this planet with. We need a new ethic.

Many oceanographers and marine biologist have, for a decade, sent out the message that the oceans are in trouble. Human impacts of over-fishing, pollution, and habitat destruction are threatening the very cycles of our existence. In the recent catastrophe in the Gulf, one corporation’s neglectful oversight and push for profit has set the stage for a century of clean up and impact, the implications of which we can only begin to imagine.

Current and reported estimates of stranded dolphins are at fifty-five. However, these are dolphins visibly stranded on beaches. Recent aerial footage, on YouTube, by John Wathen shows a much greater and serious threat. Offshore, in the “no fly zone” hundreds of dolphins and whales have been observed in the oil slick. Some floating belly up and dead, others struggling to breathe in the toxic fumes. Others exhibit “drunken dolphin syndrome” characterized by floating in an almost stupefied state on the surface of the water. These highly visible effects are just the tip of the iceberg in terms of the spill’s impact on the long term health and viability of the Gulf’s dolphin and whale populations, not to mention the suffering incurred by each individual dolphin as he or she tries to cope with this crisis.

Known direct and indirect effects of oil spills on dolphins and whales depend on the species but include, toxicity that can cause organ dysfunction and neurological impairment, damaged airways and lungs, gastrointestinal ulceration and hemorrhaging, eye and skin lesions, decreased body mass due to limited prey, and, the pervasive long term behavioral, immunological, and metabolic impacts of stress. Recent reports substantiate that many dolphins and whales in the Gulf are undergoing tremendous stress, shock and suffering from many of the above effects. The impact to newborns and young calves is clearly devastating.

After the Exxon Valdez spill in Prince William Sound in 1989 two pods of orcas (killer whales) were tracked. It was found that one third of the whales in one pod and 40 percent of the whales in the other pod had disappeared, with one pod never recovering its numbers. There is still some debate about the number of missing whales directly impacted by the oil though it is fair to say that losses of this magnitude are uncommon and do serious damage to orca societies.

Yes, orca societies. Years of field research has led to the conclusion by a growing number of scientists that many dolphin and whale species, including sperm whales, humpback whales, orcas, and bottlenose dolphins possess sophisticated cultures, that is, learned behavioral traditions passed on from one generation to the next. These cultures are not only unique to each group but are critically important for survival. Therefore, not only do environmental catastrophes such as the Gulf oil spill result in individual suffering and loss of life but they contribute to the permanent destruction of entire oceanic cultures. These complex learned traditions cannot be replicated after they are gone and this makes them invaluable.

On December 10, 1948 the General Assembly of the United Nations adopted and proclaimed the Universal Declaration of Human Rights, which acknowledges basic rights to life, liberty, and freedom of cultural expression. We recognize these foundational rights for humans as we are sentient, complex beings. It is abundantly clear that our actions have violated these same rights for other sentient, complex and cultural beings in the oceans – the dolphins and whales. We should use this tragedy as an opportunity to formally recognize societal and legal rights for them so that their lives and their unique cultures are better protected in the future.

Recently, there was a meeting of scientists, philosophers, legal experts and dolphin and whale advocates in Helsinki, Finland, who drafted a Declaration of Rights for Cetaceans a global call for basic rights for dolphins and whales. You can read more about this effort and become a signatory here: http://cetaceanconservation.com.au/cetaceanrights/. Given the destruction of dolphin and whale lives and cultures caused by the ongoing environmental disaster in the Gulf, we think this is one of the ways we can commit ourselves to working towards a future that will be a lifeboat for humans, dolphins and whales, and the rest of nature.

I’m working on this project with Institute for the Future — calling on voices everywhere for ideas to improve the future of global health. It would be great to get some visionary Lifeboat ideas entered!

INSTITUTE FOR THE FUTURE ANNOUNCES BODYSHOCK:
CALL FOR ENTRIES ON IDEAS TO TRANSFORM LIFESTYLES AND THE HUMAN BODY TO IMPROVE HEALTH IN THE NEXT DECADE

“What can YOU envision to improve and reinvent health and well-being for the future?” Anyone can enter, anyone can vote, anyone can change the future of global health.

With obesity, diabetes, and chronic disease rampaging populations around the world, Institute for the Future (IFTF) is turning up the volume on global well-being. Launching today, IFTF’s BodyShock is the first annual competition with an urgent challenge to recruit crowdsourced designs and solutions for better health–to remake the future by rebooting the present.

BodyShock calls upon the public to consider innovative ways to improve individual and collective health over the next 3–10 years by transforming our bodies and lifestyles. Video or graphical entries illustrating new ideas, designs, products, technologies, and concepts, will be accepted from people around the world until September 1, 2010. Up to five winners will be flown to Palo Alto, California on October 8 to present their ideas and be connected to other innovative thinkers to help bring these ideas to life. The grand prize winner will receive the IFTF Roy Amara Prize of $3,000.

“Health doesn’t happen all at once; it’s a consequence of years of choices for our bodies and lifestyles–some large and some small. BodyShock is intended to spark new ideas to help us find our way back to health,” said Thomas Goetz, executive editor of Wired, author of The Decision Tree, and a member of the Health Advisory Board that will be judging the BodyShock contest in addition to votes from the public.

“BodyShock is a fantastic initiative. Global collaboration and participation from all voices can produce a true revolution,” said Linda Avey, founder of Brainstorm Research Foundation and another Advisor to BodyShock.

Entries may come from anyone anywhere and can include, but are not limited to, the following: Life extension, DIY Bio, Diabetic teenagers, Developing countries, Green health, Augmented reality, Self-tracking, and Pervasive games. Participants are challenged to use IFTF’s Health Horizons forecasts for the next decade of health and health care as inspiration, and design a solution for a problem that will be widespread in 3–10 years, using technologies that will become mainstream.

“Think ‘artifacts from the future’–simple, non-obvious, high-impact solutions that don’t exist yet, will be among the concepts we’re looking to the public to introduce,” said Rod Falcon, director of the Health Horizons Program at IFTF.

BodyShock’s grand prize, the Roy Amara Prize, is named for IFTF’s long-time president Roy Amara (1925−2000) and is part of a larger program of social impact projects at IFTF honoring his legacy, known as The Roy Amara Fund for Participatory Foresight, the Fund uses participatory tools to translate foresight research into concrete actions that address future social challenges.

PANEL OF COMPETITION JUDGES

Joanne Andreadis
Lead of Innovation, Centers for Disease Control and Prevention

Linda Avey
Founder, Brainstorm Research Foundation

Jason Bobe
Director of Community, Personal Genome Project
Founder, DIYBio.org

Alexandra Carmichael
Co-founder, CureTogether
Director, Quantified Self

Ted Eytan, MD
Kaiser Permanente, The Permanente Federation

Rod Falcon
Director, Health Horizons Program

Peter Friess
President, Tech Museum of Innovation

Thomas Goetz
Executive Editor, WIRED Magazine
Author, The Decision Tree

Natalie Hodge,MD FAAP
Chief Health Officer, Personal Medicine International

Ellen Marram
Board of Trustees, Institute for the Future
President, Barnegat Group LLC

Kristi Miller Durazo
Senior Strategy Advisor, American Heart Association

David Rosenman
Director, Innovation Curriculum
Center for Innovation at Mayo Clinic

Amy Tenderich
Board Member, Journal of Participatory Medicine
Blogger, DiabetesMine.com

DETAILS

WHAT:
An online competition for visual design ideas to improve global health over the next 3–10 years by transforming our bodies and lifestyles. Anyone can enter, anyone can vote, anyone can change the future of health.

WHEN:
Launch — Friday, June 18,2010

Deadline for entries –Wednesday, September 1, 2010

Winners announced –Thursday, September 23, 2010

BodyShock Winners Celebration at IFTF — 6 — 9 p.m. Friday, October 8, 2010 — FREE and open to the public

WHERE:

http://www.bodyshockthefuture.org

(and 124 University Ave, 2ndFloor, Palo Alto, CA)

In the lunch time I am existing virtually in the hall of the summit as a face on the Skype account — i didn’t get a visa and stay in Moscow. But ironically my situation is resembling what I an speaking about: about the risk of remote AI which is created by aliens million light years from Earth and sent via radio signals. The main difference is that they communicate one way, and I have duplex mode.

This is my video presentation on YouTube:
Risks of SETI, for Humanity+ 2010 summit