Toggle light / dark theme

New research from the University of Colorado Boulder has offered some of the clearest evidence to date showing how the gut microbiome produces a metabolite that, over time, contributes to age-related declines in cardiovascular health.

High blood levels of trimethylamine-N-Oxide (TMAO), a metabolic byproduct of digestion, have been strongly linked to negative cardiovascular health. When one eats red meat, eggs or other animal proteins, certain types of gut bacteria feed on chemicals in those foods and produce TMA, or trimethylamine, which is then turned into TMAO in the liver.

A number of studies have linked TMAO to heart disease, however, until now it hasn’t been clear exactly how this metabolite causes cardiovascular damage. A robust new study, published in the journal Hypertension, is offering one of the first thorough mechanistic investigations illustrating how TMAO damages the cardiovascular system.

Elon Musk’s electric car business exceeds the value of almost every company in the S&P 500, including some iconic American companies.

Shares of Tesla (TSLA) were up 4% in midday trading Wednesday to a new record high of above $1,120 a share. At that price, Tesla’s market cap is nearly $210 billion.

With every droplet that we can’t see, touch, or feel dispersed into the air, the threat of spreading COVID-19 persists. It’s become increasingly critical to keep these heavy droplets from lingering—especially on surfaces, which are welcoming and generous hosts.

Thankfully, our chemical cleaning products are effective, but using them to disinfect larger settings can be expensive, dangerous, and time-consuming. Across the globe there are thousands of warehouses, , schools, and other spaces where cleaning workers are at risk.

With that in mind, a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), in collaboration with Ava Robotics and the Greater Boston Food Bank (GBFB), designed a new robotic system that powerfully disinfects surfaces and neutralizes aerosolized forms of the coronavirus.

This can make a huge difference in some parts.


Biohydrogel is more than just a water absorption and storage material that helps plants survive drought periods. It also functions as a soil conditioner that traps – and thereby reduces the loss of – agrochemicals like fertilizers, pesticides and herbicides. This means Biohydrogel not only decreases agricultural costs but also helps prevent environmental pollution.

If you are interested in our product, please contact our Technology Transfer Office:

Lisa-Ariadne Schmidt M.Sc.
Tel.: +43 1 47654 — 33034
[email protected]
https://www.boku.ac.at/fos/

For more information about other BOKU technologies please visit https://boku.ac.at/fos/technologietransfer/technology-offers

Tesla’s Autonomy Day in April 2019 gave supporters of the company a look into Elon Musk’s vision of a fully-autonomous future. While the event featured the company’s strategies for the future as it prepares to “free investors from the tyranny of having to drive their own cars,” the $100 billion agriculture sector is also looking into sustainable, self-driving technologies that would revolutionize the industry.

Santa Monica, California-based lawn and landscaping startup Graze is developing a solar-powered, fully-autonomous lawn mower that requires no human interaction. The battery-operated, fully-autonomous mower is being developed by Graze CEO John Vay who has an extensive background in landscaping, and CTO Roman Flores whose past employers include NASA and the Caltech Curiosity Mars Rover Team. The two minds are developing the product in an attempt to revolutionize commercial agriculture as we know it.

Disinfecting spaces such as warehouses is especially critical during the COVID-19 pandemic, but doing so while keeping workers safe can be challenging. So MIT’s Computer Science and Artificial Intelligence Laboratory came up with a solution: use a robot that employs UV-C light to disinfect surfaces and neutralize aerosolized forms of coronavirus.

Through a collaboration with Ava Robotics and the Greater Boston Food Bank, CSAIL mounted a custom UV-C lamp on an Ava Robotics mobile robot base. The lamp neutralizes around 90% of surface microorganisms, according to CSAIL. The robot is initially operated by a remote user and subsequently works autonomously, and can disinfect 4,000 square feet of warehouse space in half an hour.

A type of anaerobic bacteria responsible for more than 50 percent of nitrogen loss from marine environments has been shown to use solid-state matter present outside their cells for respiration. The finding by KAUST researchers adds to knowledge of the global nitrogen cycle and has important energy-saving potential for wastewater treatment.

Living organisms use oxidation/reduction reactions to harvest the energy they need for survival. This involves the transfer of electrons from an electron donor to an electron acceptor with energy generation. In humans, electrons are released from the food we digest and accepted by soluble oxygen inside our cells. But in many , other strategies are used for oxidation/reduction, with different types of electron donors and acceptors.

Anammox are found in oxygen-lacking marine and freshwater environments, such as sediments. They derive energy by using ammonium as their and intracellular soluble nitrite as the acceptor, with the release of nitrogen gas—or so scientists thought.

Farmers have enough worries—between bad weather, rising costs, and shifting market demands—without having to stress about the carbon footprint of their operations. But now a new set of projects by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab), including scientists at the Joint BioEnergy Institute (JBEI), could make agriculture both more sustainable and more profitable.

The three projects, funded by the U.S. Department of Energy (DOE), leverage Berkeley Lab’s strengths in artificial intelligence, sensors, and ecological biology. They aim to quantify and reduce the carbon intensity of agriculture, including the farming of biofuel feedstocks such as corn, soy, and sorghum, while also increasing yield.

Crop-based biofuels have the potential to supply up to about 5% of U.S. energy demand, according to the DOE. Two of the new projects are part of the SMARTFARM program of DOE’s Advanced Research Projects Agency-Energy (ARPA-E). This initiative aspires to make the biofuel supply chain carbon negative—meaning it removes or sequesters more carbon than it emits—which would greatly improve biofuel’s benefits to the broader economy and environment. Scientists also hope that the increased productivity will have the effect of lowering costs and increasing farmers’ income.