Toggle light / dark theme

Circa 2010


Researchers have discovered a possible new species of bacteria that survives by producing and ‘breathing’ its own oxygen. The finding suggests that some microbes could have thrived without oxygen-producing plants on the early Earth — and on other planets — by using their own oxygen to garner energy from methane (CH4).

“The mechanism we have now discovered shows that, long ago, these organisms could have exploited the methane sources on Earth and possibly on other planets and moons by mechanisms that we didn’t know existed,” says Mike Jetten, a microbiologist at Radboud University Nijmegen in the Netherlands and part of the team that conducted the study, which is published in Nature today1.

The oxygen-producing bacterium, provisionally named Methylomirabilis oxyfera, grows in a layer of methane-rich but oxygen-poor mud at the bottom of rivers and lakes. The microbes live on a diet of methane and nitrogen oxides, such as nitrite and nitrate. These nitrogen-containing compounds are especially abundant in sediment contaminated by agricultural runoff.

Anyone who spends a lot of time in the kitchen knows that there’s at least one gadget out there for every single step in the cooking process. But there has never been an appliance that could handle them all. Until now, that is.

Later this year, London-based robotics company Moley will begin selling the first robot chef, according to the Financial Times. The company claims the ceiling-mounted device, called the Moley Robotics Kitchen, will be able to cook over 5000 recipes and even clean up after itself when it’s done.

Might interest some.


A new study from the Institute of Psychiatry, Psychology and Neuroscience (IoPPN) at King’s College London has established that Intermittent Fasting (IF) is an effective means of improving long term memory retention and generating new adult hippocampal neurons in mice, in what the researchers hope has the potential to slow the advance of cognitive decline in older people.

The study, published today in Molecular Biology, found that a calorie restricted via every other day fasting was an effective means of promoting Klotho gene expression in mice. Klotho, which is often referred to as the “longevity gene” has now been shown in this study to play a central role in the production of hippocampal adult-born new neurons or neurogenesis.

Adult-born are important for formation and their production declines with age, explaining in part cognitive decline in older people.

How do simple creatures manage to move to a specific place? Artificial intelligence and a physical model from TU Wien can now explain this.

How is it possible to move in the desired direction without a brain or nervous system? Single-celled organisms apparently manage this feat without any problems: for example, they can swim towards food with the help of small flagellar tails.

How these extremely simply built creatures manage to do this was not entirely clear until now. However, a research team at TU Wien (Vienna) has now been able to simulate this process on the computer: They calculated the physical interaction between a very simple model organism and its environment. This environment is a liquid with a non-uniform chemical composition, it contains food sources that are unevenly distributed.

I could find hardly any scientific studies that showed negative results from the Mediterranean Diet for longevity, which honestly makes me a little wary of scientific establishment groupthink.

That said, I think I am going to start taking shots of olive oil after all my research…


Is the Mediterranean Diet the key to longevity? Lots of research suggests olive oil and other Mediterranean foods can help you live longer.

Combining self-assembly techniques from across scientific disciplines could allow us to precisely build any material structure.


Nanocars are an impressive achievement – but nanoarchitectonics can unlock a far greater range of material structures.

In a lecture at the American Physical Society in 1959 titled ‘There’s Plenty of Room at the Bottom’, Richard Feynman argued that huge possibilities come from working in the world of molecules and atoms. He dreamed of ultra-small computers, cars running under a microscope, and medical machines working in our body.

These dreams are now coming true. In 2017, we had the first World Nanocar Race in Toulouse, France. Six teams from around the world manipulated nanometre-size cars to run on a metal surface under a scanning tunnelling microscope. A nanocar is 2 billion times smaller than a usual car, corresponding to the size difference between a rice grain and the Earth. Feynman only imagined cars 4000 times smaller than normal. However, few of the nanocars resembled cars, and none were powered by their own motors. There’s still plenty of room for improvement.

If you’ve been to your local beach, you may have noticed the wind tossing around litter such as an empty potato chip bag or a plastic straw. These plastics often make their way into the ocean, affecting not only marine life and the environment but also threatening food safety and human health.

Eventually, many of these plastics break down into microscopic sizes, making it hard for scientists to quantify and measure them. Researchers call these incredibly small fragments nanoplastics and microplastics because they are not visible to the naked eye. Now, in a multiorganizational effort led by the National Institute of Standards and Technology (NIST) and the European Commission’s Joint Research Centre (JRC), researchers are turning to a lower part of the food chain to solve this problem.

The researchers have developed a novel method that uses a filter-feeding marine species to collect these tiny plastics from ocean water. The team published its findings as a proof-of-principle study in the scientific journal Microplastics and Nanoplastics.

Papers referenced in the video:

Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence:
https://pubmed.ncbi.nlm.nih.gov/29514064/

NAD and the aging process: Role in life, death and everything in between:
https://pubmed.ncbi.nlm.nih.gov/27825999/

Flavonoids as inhibitors of human CD38:
https://pubmed.ncbi.nlm.nih.gov/21641214/

Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome:
https://pubmed.ncbi.nlm.nih.gov/23172919/

Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity:
https://pubmed.ncbi.nlm.nih.gov/15612766/

The harmfulness of pesticides to beneficial organisms is one of the most serious concerns in agriculture. Therefore scientists are eagerly looking for new, more environmentally friendly and species-specific solutions. Researchers at the Estonian University of Life Sciences, Ghent and the University of Maastricht took a long step forward in this regard.

The detrimental impact of pesticides on non-target organisms is one of the most urgent concerns in current agriculture. Double-stranded RNAs (dsRNAs) represent the most species-specific class of pesticides to date, potentially allowing control of a target pest without effecting other species. The unprecedented target-specificity of dsRNA is due to its nucleotide sequence-specific mode of action that results in post-transcriptional gene silencing, or RNA interference (RNAi), in the target species. The development and field use of dsRNAs, via both the insertion of transgenes into the plant genome and the application of dsRNA sprays, is a rapidly growing area of research. Simultaneously, there exists the growing prospect of harnessing RNAi within integrated pest management schemes.

Using the pollen beetle (Brassicogethes aeneus) and its host crop oilseed rape (Brassica napus) as a model crop-pest system, a team of researchers collectively from Estonian University of Life Sciences, Ghent University and Maastricht University examined how RNAi efficacy depends on duration of dietary exposure to dsRNA. To this end, the authors applied dsRNA (specifically designed to induce RNAi in the pollen beetle) to oilseed rape flowers, and analyzed RNAi-induced mortality between insects chronically fed dsRNA and insects fed dsRNA for 3 days. Most notably, their data suggest that, with chronic dietary exposure to dsRNA, reduced dsRNA concentrations can be applied in order to achieve a similar effect compared to short-term (e.g. 3 days) exposure to higher concentrations. This observation has important implications for optimizing dsRNA spray approaches to managing crop pests.